Math, asked by prajyotpatil978, 2 months ago


If the perpendicular sides of a
right angled triangle are 8 cm
and 12 cm long, then what is the
area of that right angled
triangle?​

Answers

Answered by Anonymous
106

{\large{\pmb{\sf{\underline{About \; question}}}}}

Correct question: If the perpendicular sides of a right angled triangle are 8 cm and 12 cm long, then what is the area of that right angled triangle?

Understanding the question: This question means that we have to find out thebarea of that right angled triangle whose length is 12 cm and 8 cm is its base and both are given as perpendicular sides of that right angled triangle.

{\large{\pmb{\sf{\underline{Given \; that}}}}}

✠ Base of right angled triangle = 8 cm

✠ Perpendicular or height of right angled triangle = 12 cm

{\large{\pmb{\sf{\underline{To \; find}}}}}

✠ Area of right angled triangle

{\large{\pmb{\sf{\underline{Solution}}}}}

✠ Area of right angled triangle = 48 cm²

{\large{\pmb{\sf{\underline{Using \; concept}}}}}

✠ Formula to find area of traingle

{\large{\pmb{\sf{\underline{Using \; formula}}}}}

✠ Area of triangle = ½ × Base × Height

{\large{\pmb{\sf{\underline{Full \; Solution}}}}}

:\implies \sf Area \:  of \:  triangle  \: = \dfrac{1}{2} \times Base \times Height \\ \\ :\implies \sf Area  \: of \:  triangle \:  = \dfrac{1}{2} \times 8 \times 12 \\ \\ :\implies \sf Area  \: of \:  triangle  \: = \dfrac{1}{2} \times 96 \\ \\ :\implies \sf Area  \: of  \: triangle \:  = 48 cm^{2}

{\large{\pmb{\sf{\underline{Additional \; knowledge}}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: rectangle \: = \: Length \times Breadth}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: rectangle \: = \:2(length+breadth)}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: square \: = \: 4 \times sides}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: square \: = \: Side \times Side}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: triangle \: = \: \dfrac{1}{2} \times breadth \times height}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: paralloelogram \: = \: Breadth \times Height}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: circle \: = \: \pi b^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: triangle \: = \: (1st \: + \: 2nd \: + 3rd) \: side}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: paralloelogram \: = \: 2(a+b)}}}

Answered by Anonymous
188

Answer:

\Large\underline\frak\red{\pmb{Given}}

  • ➥ If the perpendicular sides of a right angled triangle are 8 cm and 12 cm long.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\Large\underline\frak\red{\pmb{To \: Find }}

  • ➥ Area of that right angled triangle.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

   \Large \underline \frak\red{\pmb{Using \: Formula }}

\displaystyle \sf{ A_{\Delta }} = \big( \dfrac{1}{2}  \big) \times (base) \times (height)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\Large\underline\frak\red{\pmb{Solution }}

 {: \implies {\displaystyle \sf\pink{ A_{\Delta }}} =  \sf\purple {\big( \dfrac{1}{2}  \big) \times (base) \times (height)}}

  • Substituting the values

 {: \implies {\displaystyle \sf\pink{ A_{\Delta }}} =  \sf{\purple {\dfrac{1}{2}  \times 8 \times 12}}}

 {: \implies {\displaystyle \sf\pink{ A_{\Delta }}}} =  \sf \cancel{ \purple { \dfrac{96}{2} }}

 {: \implies {\displaystyle \sf\pink{ A_{\Delta }}}} =  \sf \purple{48 \: {cm}^{2}}

 \:  \:  \:  \:  \:   \large \underline{\boxed{\frak \pink{Area \:  of  \: Triangle } =  \sf \purple{48 \:  {cm}^{2} }}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\Large\underline\frak\red{\pmb{Therefore}}

  • The area of right angled triangle is 48 cm²

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\Large\underline\frak\red{\pmb{Know \:  More }}

\begin{gathered}\small\begin{gathered}\begin{gathered} \bigstar \: \bf \underline{More \: Useful \: formulae} \: \bigstar\\ \begin{gathered} \\ {\boxed{\begin{array}{cccc} \\ {\displaystyle  \star\sf{Perimeter \: of \:  Triangle }} =  \sf{Length +Breadth + Height}  \\ \\  \star\sf{Area  \: of  \: Rectangle = Lenght×Breadth}  \\  \\  {\star\small\sf{Perimeter  \:  of\: Rectangle = 2(Length + Breadth)}} \\ \\ {\star\small \sf{Diagonal \: of \: Rectangle = \sqrt{ {Length }^{2} + { Breadth}^{2} }}} \\ \\ \star\small\sf{Area \: of \: Square } = {a}^{2} \\ \\ \star\small\sf{Perimeter \: of \: Square = 4a } \\ \\ \star\small\sf{Diagonal \: of \: Square = a \sqrt{2} }\end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions