Chemistry, asked by BrainlyHelper, 1 year ago

If the photon of the wavelength 150 pm strikes an atom and one of its inner bound electrons is ejected out with a velocity of 1.5 \times 10^{7} ms^{-1}, calculate the energy with which it is bound to the nucleus.

Answers

Answered by phillipinestest
1

"Energy of incident photon (E) is given by,

E\quad =\quad \frac { hc }{\lambda}

=\quad \frac { \left( 6.626\quad \times \quad { 10 }^{ -34 }\quad Js \right) \left( 3.0\quad \times \quad { 10 }^{ 8 }\quad m/s \right)}{ \left( 150\quad \times \quad { 10 }^{ -12 }\quad m \right)}

=\quad 1.3252\quad \times \quad { 10 }^{ -15 }\quad J

E\quad \simeq \quad 13.252\quad \times \quad { 10 }^{ -16 }\quad J

Energy of the electron ejected (K.E)

=\quad \frac { 1 }{ 2 } { m }_{ e }{ v }^{ 2 }

=\quad \frac { 1 }{ 2 } \left( 9.10939\quad \times \quad { 10 }^{ -31 }\quad kg \right) { \left( 1.5\quad \times \quad { 10 }^{ 7 }\quad m/s \right)}^{ 2 }

=\quad 10.2480\quad \times \quad { 10 }^{ -17 }\quad J

K.E\quad =\quad 1.025\quad \times \quad { 10 }^{ -16 }\quad J

Energy with which the electron was bound to the nucleus

=\quad 13.25\quad \times \quad { 10 }^{ -16 }\quad J\quad -\quad 1.025\quad \times \quad { 10 }^{ -16 }\quad J

=\quad 12.225\quad \times \quad { 10 }^{ -16 }\quad J

=\quad \frac { 12.225\quad \times \quad { 10 }^{ -16 }\quad J }{ 1.602\quad \times \quad { 10 }^{ -19 }\quad eV }

E\quad =\quad 7.63\quad \times \quad { 10 }^{ 3 }\quad eV"

Answered by GreenTree
1
Risk capital establishment established for:-

a) Import analysis
b) Export analysis
c) none
d) both
Similar questions