Math, asked by gaire, 4 days ago

if the point (0,c), ( -c/m,0) and (x,y) are on the same line prove that y=mx+c

Answers

Answered by abhishekwww21
0

Step-by-step explanation:

The lines makes an angle α with the line y+x=0

Slope of given line that is m

1

=−1

Let the slope of the other line be m

2

The angle between straight lines thatt is tanθ=

1+m

1

m

2

m

1

−m

2

tanα=

1−1.m

2

−1−m

2

=

m

2

−1

m

2

+1

m

2

−1

m

2

+1

=tanα,

m

2

−1

m

2

+1

=−tanα

⇒m

2

=

tanα−1

tanα+1

,

tanα+1

tanα−1

Equation of straght line with given slope and a point is y=mx+c

Lines passes through origin 0=0.m+c

⇒c=0

So the equation of lines are y=

tanα−1

tanα+1

x and y=

tanα+1

tanα−1

x

y=

sinα−cosα

sinα+cosα

x,y=

sinα+cosα

sinα−cosα

x

Combined equation of straight lines

(y−

sinα−cosα

sinα+cosα

x)(y−

sinα+cosα

sinα−cosα

x)=0

y

2

−xy(

sinα+cosα

sinα−cosα

)−xy(

sinα−cosα

sinα+cosα

)+(

sinα−cosα

sinα+cosα

)(

sinα+cosα

sinα−cosα

)x

2

=0

y

2

−xy(

(sinα+cosα)(sinα−cosα)

(sinα−cosα)

2

+(sinα+cosα)

2

)+x

2

=0

y

2

−xy(

sin

2

α−cos

2

α

2

)+x

2

=0

y

2

−xy(

−cos2α

2

)+x

2

=0

y

2

+2xysec2α+x

2

=0

Hence proved

Similar questions