Math, asked by nayaksanju17, 8 months ago

if the point (1, x) , (5, 2) and (9, 5) are collinear then the value x is​

Answers

Answered by VishnuPriya2801
29

Answer:-

Given:

(1 , x) , (5 , 2) & (9 , 5) are collinear points.

We know that,

If three points are collinear then the area of the triangle formed by them will be zero.

 \sf Area\: of \:a \: \triangle = \dfrac{1}{2}\begin{vmatrix}\sf x_1-x_2&\sf x_1 - x_3\\\\\sf y_1-y_2&\sf y_1-y_3 \end{vmatrix} \quad

So, area of the ∆ formed by the given points = 0.

Let,

  • x₁ = 1

  • x₂ = 5

  • x₃ = 9

  • y₁ = x

  • y₂ = 2

  • y₃ = 5

Hence,

  \implies\sf Area  \: of \:  the \:  \triangle = \dfrac{1}{2}\begin{vmatrix}\sf 1-5&\sf 1 - 9\\\\\sf \: x-2&\sf x-5 \end{vmatrix}   \\  \\  \implies\sf 0  = \frac{1}{2}  \begin{vmatrix} \sf \:  - 4& \sf \:  - 8  \\  \\  \sf \: x - 2& \sf \: x - 5 \end{vmatrix} \\  \\  \\  \\  \implies \sf \: 0 =  |(x - 5)( - 4) - ( - 8)(x - 2)|  \\  \\ \implies \sf \: 0 =  | - 4x + 20 - ( - 8x + 16)|  \\  \\ \implies \sf \: 0 =  | - 4x + 20 + 8x - 16|  \\  \\ \implies \sf \: 0 =  |4x + 4|  \\  \\ \implies \sf \: 4x =  - 4 \\  \\ \implies \sf \: x =  \frac{ - 4}{4}  \\  \\ \implies \boxed{ \sf x =  - 1}

Therefore, the value of x is - 1.

Answered by SaI20065
47

\implies \boxed{ \sf{there \: are \: two \: methods \: in \: which \: this}}</p><p>

\implies \boxed{ \sf{question \: can \: be \: solved}}

{\huge{\boxed{\overline{\mid{Method \:1}}}}}}

\implies \boxed{ \sf{For \:  the \:  collinear  \: all  \: three \:  point}} \\  \boxed{ \sf{ must \:  lie \:  on \:  the  \: same  \: line.}}</p><p>

\implies \boxed{ \sf{let \: the \: given \: 3 points \:  let}}  =  \\  \boxed{ \sf{ A(1,X),B(5,2),C(9,5)}}

 \implies\boxed{ \sf{Consider \: B \: Let (x1=5,y1=2)}}

 \implies\boxed{ \sf{Similarly \: for \:  A \: C }}\\   \boxed{ \sf{(x3=1 \: y3=X) (x2=9 \: y2=5)}} \\ \boxed { \sf{ respectively.</p><p>}}

 \implies\boxed{ \sf{Lets \:  recall \:  the \:  the slope \:  point  \: form \: }} \\  \boxed{ \sf{ of straight line </p><p>}}

 \implies\boxed{ \sf{(y-y1)=m(x-x1)}}

 \implies\boxed{ \sf{Where \:  m \:  is  \: slope  \: which  \: is  \: equal  \:}}  \\ \boxed{ \sf{to\frac{(y2-y1)}{(x2 - x1)} }}

\implies \boxed{ \sf{In \:  this \:  question  \: m= \frac{5 - 2}{9 - 5 } =  \frac{3}{4}  }}

 \implies\boxed{ \sf{Now  \: using \:  slope  \: point  \: form:}}

 \implies\boxed{ \sf{y-2=(x-5)3/4}} \\  \boxed{ \sf{ = 4y-8=3x-15}}</p><p>

 \implies\boxed{ \sf{3x-4y-7=0}} \\  \boxed{ \sf {(this  \: the \:  equation  \: of \:  line)}}

 \implies\boxed{ \sf{Now  \: if  \: we  \: put \:  the  \: valu \: e of \:  x \: }} \\  \boxed{ \sf{ co -oridinate  \: then \:  we  \: must}}

 \implies\boxed{ \sf{get \:  the  \: value  \: of  \: y \:  co \:  oridinate}}

 \implies\boxed{ \sf{Put \:  point \:  A(1,X)}}

 \implies\boxed{ \sf{Put \:  point \:  A(1,X)}}

 \implies\boxed{ \sf{3 - 4X-7=0}}

 \implies\boxed{ \sf{-4X=4}}

 \implies\boxed{ \sf{X= -1}}

{ \huge{ \boxed{ \overline{ \mid{Method \: 2}}}}}

\implies \boxed{ \sf{For  \: collinear \:  all \:  three  \: point \:  must  \: }} \\  \boxed{ \sf{lie \:  on \:  same \:  line \:  and  \: the \:  slope \:  will \:  be \: }} \\  \boxed{ \sf{ equal \:  for \:  each \:  and  \: every  \: point.}}

 \implies\boxed{ \sf{ \frac{(y2 - y1)}{(x2 - x1)}  =  \frac{(y3 - y2)}{(x3 - x1)} }}</p><p>

\implies \boxed{ \sf{ \frac{5 - 2}{9 - 5} =  \frac{x - 5}{1 - 9}  }}

\implies \boxed{ \sf{-6=X-5}}</p><p> \\  \implies\boxed{ \sf{X=-1}}

Similar questions