Math, asked by aadityarajput7, 1 year ago

If the point A(2,-4) is equidistant from P(3,8) & Q(-10,y),find the value of y.Also find PQ.​

Answers

Answered by rajendrachuphal22
1

Hope it is right answer

Attachments:
Answered by SpaceyStar
13

 \huge{ \underline{ \boxed{ \sf{ \red{Detailed \: AnsweR}}}}}

Given : The point A(2, -4) is equidistant from P(3,8) & Q(-10,y)

To Find : Find the value of y, Find PQ.

⟹ AP = AQ ( given that they are equidistant )

Let us find their distances using distance formula,

 \sqrt{(x2 - x1)^{2} + (y2 - y1)^{2}} = \sqrt{(x2 - x1)^{2} + (y2 - y1)^{2} }

In AP,

\sf{x_{1} = 2}

\sf{y_{1} = - 4}

\sf{x_{2} = 3}

\sf{y_{2} = 8}

In AQ,

\sf{x_{1} = 2}

\sf{x_{2} = - 10}

\sf{y_{1} = - 4}

\sf{y_{2} = y}

Substituting the values,

 \sqrt{(3 - 2) ^{2} + (8 + 4} ) ^{2} = \sqrt{( - 10 - 2)^{2} + (y + 4) ^{2} }

 \sqrt{(1 + 144)} = \sqrt{( - 144) + (y ^{2} - 8y + 16) }

Squaring on both sides,

( { \sqrt{(1 + 144)} } \: \: )^{2} = ( { \sqrt{( - 144) + ( {y}^{2} + 8y + 16 } }) ^{2} \: )

Now square and root gets cancelled,

1 + 144 = - 144 + y² + 8y + 16144

y² + 8y + 16 - 1

= 0y² + 3y + 5y + 15

= 0y ( y + 3 ) + 5 ( y + 3 )

( y + 3 ) ( y + 5 )

\boxed{\sf{\green{y = -3}}}\boxed{\sf{\blue{y = - 5}}}

These are the values of y.

_________________________

Now we have to find the value of PQ using distance formula.

We got 2 values of y, so we have to check the distance twice.

When the value of y = -3,

P(3,8) & Q(-10,-3)\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}

\sqrt{(-10-3)^2+(-3-8)^2}\sqrt{169+121}

PQ = \sqrt{290}

When the value of y = -5,P(3,8) & Q(-10,-5)

\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}

\sqrt{(-10-3)^2+(-5-8)^2}

\sqrt{169+169}PQ = \sqrt{338}

______________________

Similar questions