If the point A (7, k) is the vertex of an isosceles triangle ABC with base BC,
where B = (2, 4) and C = (6, 10), then what is 'k'?
1) 6 2) 3 3) 4 4) 5
Answers
Answered by
2
A , B and C are vertices of an isosceles triangle with base BC.
so, AB = BC
use distance formula,
AB =![\bf{\sqrt{(7-2)^2+(k-4)^2}} \bf{\sqrt{(7-2)^2+(k-4)^2}}](https://tex.z-dn.net/?f=%5Cbf%7B%5Csqrt%7B%287-2%29%5E2%2B%28k-4%29%5E2%7D%7D)
AB =![\bf{\sqrt{5^2+(k-4)^2}} \bf{\sqrt{5^2+(k-4)^2}}](https://tex.z-dn.net/?f=%5Cbf%7B%5Csqrt%7B5%5E2%2B%28k-4%29%5E2%7D%7D)
similarly, BC =
BC =![\bf{\sqrt{1+(k-10)^2}} \bf{\sqrt{1+(k-10)^2}}](https://tex.z-dn.net/?f=%5Cbf%7B%5Csqrt%7B1%2B%28k-10%29%5E2%7D%7D)
so,
squaring both sides,
5² + (k - 4)² = 1² + (k - 10)²
25 + (k - 4)² = 1 + (k - 10)²
24 = (k - 10)² - (k - 4)²
24 = -6(2k - 14)
-4 = 2k - 14
10 = 2k
k = 5
hence, option (4) is correct
so, AB = BC
use distance formula,
AB =
AB =
similarly, BC =
BC =
so,
squaring both sides,
5² + (k - 4)² = 1² + (k - 10)²
25 + (k - 4)² = 1 + (k - 10)²
24 = (k - 10)² - (k - 4)²
24 = -6(2k - 14)
-4 = 2k - 14
10 = 2k
k = 5
hence, option (4) is correct
Similar questions