Math, asked by ieecac1882, 2 months ago

If the point C(-1,2) divides internally the line segment joining A (2,5) and B in
the ratio 3: 4,find the co-ordinates of B.​

Answers

Answered by ShírIey
10

☯ Let the Co-ordinate of point B be (x, y) and AC: BC = 3:4.

\star DIAGRAM:

⠀⠀\setlength{\unitlength}{14mm}\begin{picture}(7,5)(0,0)\thicklines\put(0,0){\line(1,0){5}}\put(5.1, - 0.3){\sf B}\put( - 0.2, - 0.3){\sf A}\put(5.2, 0){\sf (x, y)}\put( - 0.7, 0){\sf (2,5)}\put(2.3, 0.2){\sf C}\put(2.2, - 0.3){\sf (-1,2)}\put(5, 0){\circle*{0.1}}\put(2.4, 0){\circle*{0.1}}\put(0, 0){\circle*{0.1}}\put(1,0.2){\sf 3}\put(3.5, 0.2){\sf 4}\end{picture}⠀⠀

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀

Given that,

  • The point C(-1, 2) divide internally the line segment joining points A(2, 5) and B in the ratio 3:4.

\underline{\bigstar\:\boldsymbol{Using\:section\:formula\::}}\\ \\

\dag\:\boxed{\sf{\pink{\Big(x, y \Big) = \Bigg(\dfrac{mx_2 + nx_1}{m + n} \dfrac{my_2 + ny_1}{m + n}\Bigg)}}}

\\

:\implies\sf \dfrac{3x + 4(2)}{3 + 4} = -1 \\\\\\:\implies\sf \dfrac{3x + 8}{7} \\\\\\\\:\implies\sf 3x + 8 = -7 \\\\\\:\implies\sf x = \cancel\dfrac{-15}{\:3} \\\\\\:\implies{\underline{\boxed{\frak{\purple{x = -5}}}}}\:\bigstar

\\

Similarly,

⠀⠀⠀

:\implies\sf \dfrac{3y + 4(5)}{3 + 4} = 2\\\\\\:\implies\sf \dfrac{3y + 20}{7} = 2 \\\\\\:\implies\sf  3y + 20 = 14\\\\\\:\implies\sf  3y = -6\\\\\\:\implies\sf y = \cancel\dfrac{-6}{\:3}\\\\\\:\implies{\underline{\boxed{\frak{\purple{y = -2}}}}}\:\bigstar

⠀⠀

\therefore\:{\underline{\sf{Hence, \ the \ Co-ordinate \ of \ point \ B \ is\: \bf{\Big(-5, -2 \Big)}.}}}


INSIDI0US: Great answer mam
Answered by mathdude500
2

\underline\green{\bold{Given \:  Question :-  }}

  • If the point C(-1,2) divides internally the line segment joining A (2,5) and B in the ratio 3: 4,find the co-ordinates of B.

___________________________________________

\huge \orange{AηsωeR} ✍

{ \boxed {\bf{Given}}}

  • The point C(-1,2) divides internally the line segment joining A (2,5) and B in the ratio 3: 4,

{ \boxed {\bf{To Find}}}

  • The co-ordinates of B.

{ \boxed {\bf{Formula  \: used :- }}}

☆ Section Formula

Let us consider a line segment joining the points

\sf \:  A(x_1,y_1)  \: and  \: B(x_2,y_2)

Let C(x, y) be the point which divides the line segment joining A and B, in the ration m : n, then coordinates of C is given by

\bf \:( x, y) = (\dfrac{nx_1+mx_2}{m + n}  , \dfrac{ny_1+my_2}{m + n} )

{ \boxed {\bf{Solution}}}

\bf \:Let \:  coordinates  \: of  \: B  \: be \:  (a, b).

\begin{gathered}\bf\red{According \: to \: statement}\end{gathered}

☆ The point C(-1,2) divides internally the line segment joining A (2,5) and B in the ratio 3: 4.

Using Section Formula,

\bf \:( x, y) = (\dfrac{nx_1+mx_2}{m + n}  , \dfrac{ny_1+my_2}{m + n} )

☆ On substituting the values of

\bf \:  x_1 =2 ,y_1 =5 ,x_2=a ,y_2=b \\ \bf \:  x=  - 1,y =2 ,m= 3  ,n=4

☆ we get

\bf \:(  - 1, 2) = (\dfrac{4 \times 2 + 3 \times a}{3 + 4}  , \dfrac{4 \times 5 + 3 \times b}{3 + 4} )

\bf \:(  - 1, 2) = (\dfrac{8 + 3a}{7}  , \dfrac{20 + 3 b}{7} )

\bf \:\dfrac{8 + 3a}{7} =  - 1 \: and \: \dfrac{20 + 3 b}{7} = 2

\bf \:  ⟼ 8 + 3a =  - 7 \: and \: 20 + 3b = 14

\bf \:  ⟼ 3a =  - 15 \: and \: 3b =  - 6

\bf\implies \:a =  - 5 \: and \: b \:  =  - 2

\large{\boxed{\boxed{\bf{Hence, \:  coordinates \:  of  \: B \:  is  \: (-5, -2)}}}}

Similar questions