If the point (h, k) is equidistant from the points (2, 0) and (0, 2), prove that h=k. [ 2 ]
Answers
Answered by
0
Answer:
y=0
Step-by-step explanation:
locus of point be P(h,k)
so A(0,2) & B(0,−2)
AP=(0−h)2+(k−2)2
BP=(0−h)2+(k+2)2
AP=BP (points are equidistant)
(0−h)2+(k−2)2=(0−h)2+(k+2)2
k2+4−4h=k2+4+4k
8k=0
k=0
put k=y
∴y=0
Answered by
0
Step-by-step explanation:
(0−h)²+(k−2)²=(0−h)² +(k+2)²
k²+4−4h=k²+4+4k
8k=0
k=0
put k=y
∴y=0
Similar questions