if the point P(4a,2a-1) lies on the graph of the equation x-2y=2 then the number of values (s) of is are
Answers
Answered by
2
Step-by-step explanation:
Point(2a,a+1)isaninteriorpointofcircle,
∴(2a)
2
+(a+1)
2
−2(2a)−2(a+1)−8<0.
⇒4a
2
+a
2
+1+2a−4a−2a−2−8<0.
⇒5a
2
−4a−9<0.
⇒5a
2
−9a+5a−9<0.
⇒5a
2
−5a−9a−9<0.
⇒5a(a+1)−9(a+1)<0.
⇒(a+1)(a−
5
9
)<0.
a ε (−1,
5
9
).→(1).
Point will lie on same side of line towards which centre of circle lie.
⇒Centre→(1,1).
⇒x−y+1
⇒1−1+1=2>0.
∴2a−(a+1)+1>0.
⇒2a−a−1+1>0.
⇒a>0→(2).
Using(1)&(2):
⇒aε(0,
5
9
)
Answered by
13
Step-by-step explanation:
since the point lies on graph of equation x-2y=2, so the point P Satisfies it.. so put values of x and y in given equation
so clearly on putting values of x and y equation reduces to identity or a vanishes.... hence there exist infinitely many values of a
Similar questions