Math, asked by asmitabanerjee0909, 9 months ago

If the point P(OK) is equidistant
From the points A (2,-2) and B (6,2)
find K,​

Answers

Answered by vihu14
0

Step-by-step explanation:

The value of k is \frac{15}{8}

8

15

and the length of ap is \frac{5\sqrt{41}}{8}

8

5

41

units.

Step-by-step explanation:

It is given that point p (2,2) is equidistant from the point a(-2,k) and b(-k,3).

Distance formula:

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}d=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

pa=pbpa=pb

\sqrt{(-2-2)^2+(k-2)^2}=\sqrt{(-k-2)^2+(3-2)^2}

(−2−2)

2

+(k−2)

2

=

(−k−2)

2

+(3−2)

2

\sqrt{k^2 - 4 k + 20}=\sqrt{k^2 + 4 k + 5}

k

2

−4k+20

=

k

2

+4k+5

Squaring both the sides.

k^2 - 4 k + 20=k^2 + 4 k + 5k

2

−4k+20=k

2

+4k+5

15=8k15=8k

k=\frac{15}{8}k=

8

15

The value of k is \frac{15}{8}

8

15

.

The length of ap is

ap=\sqrt{(-2-2)^2+(k-2)^2}ap=

(−2−2)

2

+(k−2)

2

ap=\sqrt{(-4)^2+(\frac{15}{8}-2)^2}ap=

(−4)

2

+(

8

15

−2)

2

ap=\sqrt{16+(\frac{-1}{8})^2}ap=

16+(

8

−1

)

2

ap=\frac{5\sqrt{41}}{8}ap=

8

5

41

Therefore the length of ap is \frac{5\sqrt{41}}{8}

8

5

41

units.

please mark me brainliest

Similar questions