if the point p(x,y) is equidistant from a points A(a+b,b-a) an B(a-b ,b+a).prove that bx = ay.
i don't need copied answer...
Answers
Answered by
11
hope this will help u... :-)
Attachments:
slokesharavind:
you
Answered by
3
If point P ( x, y) is equidistant from A and B, then the distance between them will be equal.
PA = PB
√[ ( a + b) - x ] ^2 + [( b - a ) - y ] ^2 =√ [( a - b ) - x] ^2 + ( b + a - y ) ^2
( a + b - x ) ^2 + ( b - a - y ) ^2 = ( a - b - x ) ^2 + ( a + b - y) ^2
( a + b - x ) ^2 - ( a - b - x ) ^2 = ( a +b - y ) ^2 - ( b - a - y ) ^2
( a +b - x + a - b - x ) ( a +b - x - a +b +x ) = ( a +b - y + b - a - y ) ( a +b - y - b + a +y )
( 2a - 2x) ( 2b) = ( 2b - 2y ) ( 2a )
2 [( a - x ) b] = 2 [( b - y ) a ]
(a - x ) b = ( b - y) a
ab - xb = ab - ay
Hence, PROVED.
PA = PB
√[ ( a + b) - x ] ^2 + [( b - a ) - y ] ^2 =√ [( a - b ) - x] ^2 + ( b + a - y ) ^2
( a + b - x ) ^2 + ( b - a - y ) ^2 = ( a - b - x ) ^2 + ( a + b - y) ^2
( a + b - x ) ^2 - ( a - b - x ) ^2 = ( a +b - y ) ^2 - ( b - a - y ) ^2
( a +b - x + a - b - x ) ( a +b - x - a +b +x ) = ( a +b - y + b - a - y ) ( a +b - y - b + a +y )
( 2a - 2x) ( 2b) = ( 2b - 2y ) ( 2a )
2 [( a - x ) b] = 2 [( b - y ) a ]
(a - x ) b = ( b - y) a
ab - xb = ab - ay
Hence, PROVED.
Similar questions
Computer Science,
6 months ago
Computer Science,
6 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Geography,
1 year ago