Math, asked by Anonymous, 1 year ago

if the point P ( x, y) is equidistant from the point A ( a- b, a + b ) and B ( a + b , b - a) then prove that bx=ay

Answers

Answered by Anonymous
10

A  LE CHAKK :-D

point P ( x, y) is equidistant from the point A ( a- b, a + b ) and B ( a + b , b - a) .

since P is Equidistant

therefore,

AP=BP

Thus using Section Formula Apa nu mil  geya eh....hihih... :-

√[x-(a-b)]² +[y-(a+b)]² =√[x-(a+b)]²+[y-(b-a)]²

SO underoot ta cancel hoge....xD

[x-(a-b)]² +[y-(a+b)]² =[x-(a+b)]² + [y-(b-a)]²

x²-2x(a-b)+(a-b)²+y²-2y(a+b)+(a+b)²=x²-2x(a+b)+(a+b)²+y²-2y(b-a)+(b-a)²

-2x(a-b)-2y(a+b)=-2x(a+b)-2y(b-a)

ax-bx+ay+by=ax+bx+by-ay

2ay=2bx

ay=bx

or

bx=ay


oho.....finally ho geya......thanks to me.....may  it help u ^_*









Anonymous: oh..thanx :-D
lovemeplz: u have any lover yes or no
lovemeplz: eva gill♥
Anonymous: yes
lovemeplz: can u make me
Anonymous: hihihi...nope
lovemeplz: ok thank u byr
lovemeplz: tata
Anonymous: ya...bie
Anonymous: ^-^
Similar questions