if the point P ( x, y) is equidistant from the point A ( a- b, a + b ) and B ( a + b , b - a) then prove that bx=ay
Answers
Answered by
10
A LE CHAKK :-D
point P ( x, y) is equidistant from the point A ( a- b, a + b ) and B ( a + b , b - a) .
since P is Equidistant
therefore,
AP=BP
Thus using Section Formula Apa nu mil geya eh....hihih... :-
√[x-(a-b)]² +[y-(a+b)]² =√[x-(a+b)]²+[y-(b-a)]²
SO underoot ta cancel hoge....xD
[x-(a-b)]² +[y-(a+b)]² =[x-(a+b)]² + [y-(b-a)]²
x²-2x(a-b)+(a-b)²+y²-2y(a+b)+(a+b)²=x²-2x(a+b)+(a+b)²+y²-2y(b-a)+(b-a)²
-2x(a-b)-2y(a+b)=-2x(a+b)-2y(b-a)
ax-bx+ay+by=ax+bx+by-ay
2ay=2bx
ay=bx
or
bx=ay
oho.....finally ho geya......thanks to me.....may it help u ^_*
Anonymous:
oh..thanx :-D
Similar questions