if the point p (x,y) is equidistant from the point A (a+b,b-a)and B (a-b,a+b) prove that bx=ay
Answers
Answered by
2
Point p is equidistance from A and B
So, AP=BP
{(a+b)-x}+{(b-a)-y}={(a-b)-x}+{(a+b)-y}
(a-b-x)+(b+a-y)=(a+b-x)+(a-b-y)
a-b-x+b+a-y=a+b-x+a-b-y
2a-x-y=2a-x-y
2a-x-y-2a+x+y=0
0=0
answer is 0
please mark as brainlist
So, AP=BP
{(a+b)-x}+{(b-a)-y}={(a-b)-x}+{(a+b)-y}
(a-b-x)+(b+a-y)=(a+b-x)+(a-b-y)
a-b-x+b+a-y=a+b-x+a-b-y
2a-x-y=2a-x-y
2a-x-y-2a+x+y=0
0=0
answer is 0
please mark as brainlist
Similar questions
Social Sciences,
8 months ago
History,
8 months ago
Math,
1 year ago
Geography,
1 year ago
English,
1 year ago