if the point p(x,y) is equidistant from the points Q(a+b,b-a) and R(a-b,a+b), then prove that bx=ay
girishgv60:
is it related to coordinate geometry/??
Answers
Answered by
41
HELLO FRIEND..
REFER TO THE ATTACHMENT...
# GUDIYA...
HOPE IT HELPS...!!!!☺☺☺
REFER TO THE ATTACHMENT...
# GUDIYA...
HOPE IT HELPS...!!!!☺☺☺
Attachments:
Answered by
22
hi frnd!!!
here u go
....
hoe it hlps u...!!!
Distance between the points (x,y) and (a+b, b-a) and (a-b, a+b) is equal
=> √{[x - (a+b)]² + [y - (b-a)]²} = √{x - (a-b)]² + [y - (a+b)]²}
=> x² + (a+b)² - 2x(a+b) + y² + (b-a)² - 2y(b-a) = x² + (a-b)² - 2x(a-b) + y² + (a+b)² - 2y(a+b)
=> -2ax - 2bx - 2by + 2ay = -2ax + 2bx - 2ay - 2by
=> ay - bx = bx - ay
=> 2ay = 2bx
=> bx = ay
HENCE PROVED!!!
Regards,^_^
ANKITA❤️
here u go
....
hoe it hlps u...!!!
Distance between the points (x,y) and (a+b, b-a) and (a-b, a+b) is equal
=> √{[x - (a+b)]² + [y - (b-a)]²} = √{x - (a-b)]² + [y - (a+b)]²}
=> x² + (a+b)² - 2x(a+b) + y² + (b-a)² - 2y(b-a) = x² + (a-b)² - 2x(a-b) + y² + (a+b)² - 2y(a+b)
=> -2ax - 2bx - 2by + 2ay = -2ax + 2bx - 2ay - 2by
=> ay - bx = bx - ay
=> 2ay = 2bx
=> bx = ay
HENCE PROVED!!!
Regards,^_^
ANKITA❤️
Similar questions