Math, asked by Huzu2, 1 year ago

if the point p(x,y) is equidistant from the two points A(-3,2) and B(4,-5). prove that y = x - 2

Answers

Answered by katyayanikml
36
I hope it helps u......
Attachments:

Huzu2: Thanls
Huzu2: Thanks*
katyayanikml: wlcm
Answered by tardymanchester
32

Answer:

Step-by-step explanation:

Given : Point p(x,y) is equidistant from the two points A(-3,2) and B(4,-5).

To Find : Prove that y = x - 2

Solution :

Calculate the distance between Point p and Point A using distance formula .

Distance formula: d=\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^2}

Point p : (x_1,y_1) = (x,y)

Point A : (x_2,y_2) = (-3,2)

So, d=\sqrt{(-3-x)^{2}+(2-y)^2}  --1

Calculate the distance between Point p and Point B using distance formula .

Distance formula: d=\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^2}

Point p : (x_1,y_1) = (x,y)

Point B : (x_2,y_2) = (4,-5)

So, d=\sqrt{(4-x)^{2}+(-5-y)^2}   --2

Since we are given that Point p(x,y) is equidistant from the two points A(-3,2) and B(4,-5).

So, equate 1 and 2

\sqrt{(-3-x)^{2}+(2-y)^2}=\sqrt{(4-x)^{2}+(-5-y)^2}

\sqrt{9+x^2+6x+4+y^2-4y}=\sqrt{16+x^2-8x+25+y^2+10y}

9+x^2+6x+4+y^2-4y=16+x^2-8x+25+y^2+10y

6x-4y+13=-8x+10y+41

6x+8x=10y+4y+41-13

14x=14y+28

x=y+2

y=x-2

Hence proved

Similar questions