If the point [x,y]is equidistant from points [a+b,a-b] and [a-b,a+b], then prove that bx=ay
Answers
Step-by-step explanation:
See the attachment
Thank you
Given :-
P ( x,y ) is equidistant from points A [ (a+b),(b-a) ] and B [ (a-b),(a+b) ] .
T. P. :- bx = ay
Proof :-
Let ( x1,y1 ) and ( x2,y2 ) be A [ (a+b),(a-b) ] and B [ (a-b),(a+b) ] respectively.
By distance formula,
Distance = √ ( x - x1 )² + ( y -y1 )
PA = √ [ x - ( a+b ) ]² + [ y - ( b-a ) ]²
squaring both sides....
=> PA² = [ x - ( a+b ) ]² + [ y - ( b-a ) ]²
=> PA² = x² + ( a+b )² - 2x( a+b ) + y² + ( a-b )² - 2y( b-a ) ..... (i)
Distance = √ ( x - x2 )² + ( y -y2 )
PB = √ [ x - ( a-b ) ]² + [ y - ( a+b ) ]²
squaring both sides....
squaring both sides.... => PB² = [ x - ( a-b ) ]² + [ y - ( a+b ) ]²
b ) ]²=> PB² = x² + ( a-b )² - 2x( a-b ) + y² + ( a+b )² - 2y( a+b ) ...... (ii)
Now,
PA = PB
=> PA² = PB²
=> x² + ( a+b )² - 2x( a+b ) + y² + ( a-b )² - 2y( b-a ) = x² + ( a-b )² - 2x( a-b ) + y² + ( a+b )² - 2y( a+b )
=> - 2x( a+b ) - 2y( b-a ) = - 2x( a-b ) - 2y( a+b )
( cancelling x² , y² , ( a-b )² , ( a+b )² from both sides )
=> - 2x( a+b ) + 2x( a-b ) = - 2y( a+b ) + 2y( b-a )
=> - x ( a+b ) + x ( a-b ) = - y ( a+b ) + y ( b-a )
( cancelling 2 from both sides )
=> x ( a-b ) - x ( a+b ) = y ( b-a ) - y ( a+b )
=> x ( a - b - a - b ) = y ( b - a - a - b )
=> x (-2b) = y (-2a)
=> bx = ay
( cancelling -2 from both sides)