if the points 2, 1 and 1 -2 are equidistant from the point x, y show that X + 3 Y is equal to zero.
Answers
Answer:
The value of x + 3y is zero.
Step-by-step-explanation:
Let the given points be A, B and C.
- A ≡ ( 2, 1 ) ≡ ( x₁, y₁ )
- B ≡ ( 1, - 2 ) ≡ ( x₂, y₂ )
- C ≡ ( x, y )
We have given that,
The two points A and B are equidistant from point C.
∴ d ( A, C ) = d ( B, C )
Now, by distance formula,
⇒ √[ ( x₁ - x )² + ( y₁ - y )² ] = √[ ( x₂ - x )² + ( y₂ - y )² ]
By squaring both sides, we get,
⇒ ( x₁ - x )² + ( y₁ - y )² = ( x₂ - x )² + ( y₂ - y )²
⇒ ( 2 - x )² + ( 1 - y )² = ( 1 - x )² + ( - 2 - y )²
⇒ 2² - 4x + x² + 1² - 2y + y² = 1² - 2x + x² + ( - 2 )² + 4y + y²
⇒ x² - 4x + 4 + 1 + y² - 2y = x² - 2x + 1 + 4 + 4y + y²
⇒ - 4x + 5 - 2y = - 2x + 5 + 4y
⇒ - 4x - 2y = - 2x + 4y
⇒ - 2x - y = - x + 2y - - - [ Dividing both sides by 2 ]
⇒ - 2x + x = 2y + y
⇒ - x = 3y
⇒ x = - 3y
Now, we have to find the value of x + 3y.
x + 3y
⇒ - 3y + 3y
⇒ 0
∴ The value of x + 3y is zero.
Step-by-step explanation:
given :
- equidistant point are = 2, 1 and 1 -2
- x, y point equal to zero = X + 3 Y
to find :
- show that X + 3 Y is equal to zero.
knowledge required :
- The distances of the point (2, 1) and (1, -2)
- from (x, y) are √(x − 2)² + (y − 1)² and
- √(x - 1)² + (y + 2)2 units respectively. According to the problem,
solution :
- √(x - 2)² + (y − 1)² =√(x − 1)² + (y + 2)²
- or, (x - 2)² + (y - 1)² = (x − 1)² + (y + 2)²
- or, - 4x + 4 - 2y + 1 = -2x + 1 + 4y +4
- or, 2x+6y=0
- or, x + 3y = 0.
thus :
- X + 3 Y is equal to = 0 is correct answer