Math, asked by edurupenchiliya282, 10 months ago

If the points (3,0) (0,4) (0,0) and (K,4) are concyclic points then k=​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\text{The points (3,0), (0,4), (0,0) and (k,4) are concyclic}

\textbf{To find:}

\text{The value of k}

\textbf{Solution:}

\text{Since the points are concyclic, they on a same circle}

\text{First we find out the equation of the circle which passes through}

(3,0),\;(0,4),\;\text{and}\;(0,0)

\text{Let the equation of the circle be}

x^2+y^2+2g\,x+2f\,y+c=0

\text{since the circle passes through (3,0), (0,4) and (0,0), we have}

\text{For (0,0)}

0^2+0^2+2g(0)+2f(0)+c=0

\implies\bf\,c=0

\text{For (3,0)}

3^2+0^2+2g(3)+2f(0)+0=0

9+6g=0

6g=-9

\implies\,g=\dfrac{-9}{6}

\implies\bf\,g=\dfrac{-3}{2}

\text{For (0,4)}

0^2+4^2+2g(0)+2f(4)+0=0

16+8f=0

8f=-16

\implies\bf\,f=-2

\text{The equation of the required circle is}

\bf\,x^2+y^2-3x-4y=0

\text{Since the circle also passes through (k,4), we have}

k^2+4^2-3k-4(4)=0

k^2+16-3k-16=0

k^2-3k=0

k(k-3)=0

\implies\,k=0,3

\text{For k=0, the corresponding point is (0,4)}

\therefore\textbf{The required value of k is 3}

Similar questions