Math, asked by CitrusTalk3158, 7 months ago

If the points (3, 2) and (2, –3) are equidistant from points (x, y) show that x + 5y = 0

Answers

Answered by Anonymous
10

atq \\  \sqrt{ {(x - 3)}^{2}  +  {(y - 2)}^{2} }  =  \sqrt{ {(x - 2)}^{2} +  {(y + 3)}^{2}  }  \\  \sqrt{ {x}^{2}  + 9 - 6x +  {y}^{2} + 4 - 4y }  =   \sqrt{ { x }^{2}  + 4 - 4x +  {y}^{2}  + 9 + 6y}  \\  {x}^{2}  +  {y}^{2} - 6x - 4y + 13 =  {x}^{2}   +   {y}^{2}  - 4x + 6y + 13 \\  - 6x - 4y =  - 4x + 6y \\  - 6x + 4x = 6y + 4y \\  - 2x =  10y \\ x =  \frac{10y}{ - 2}  \\ x =  - 5y \\ x  + 5y = 0 \\ hence \: proved.

Similar questions