Math, asked by unuprince, 1 year ago

if the points A(1,-2), B(2,3), C(-3,2) and D (-4,-3) are the vertices of a parallelogram ABCD then taking AB as the base, find the height of a parallelogram.

Answers

Answered by chintalasujat
6

Answer:

Step-by-step explanation:

Consider a ||gram whose vertices are A(1,-2), B(2,3), C(-3,2) and D(-4,-3).

Construction :- Draw a perpendicular(DL) to the base AB from D.

           DL is the height of the parallelogram if base is AB.

Let  D≡(p,q).

Evaluation :-

   Slope of a line = (y₂ - y₁)/(x₂ - x₁)

∴ slope of line AB = (3 + 2)/(2 - 1) = 5 = m₁   (say)

slope of line AL = slope of line AB = m₁ = (q + 2)/(p - 1) 

                (q + 2)/(p - 1) = 5

                 ⇒ q + 2 = 5p - 5

                 ⇒ 5p - q = 7 --------------------- (i)

slope of line DL = m₂ = (q + 3)/(p + 4).

We know that product of slopes of two perpendicular lines = -1

i.e, m₁ × m₂ = -1

⇒   5 × m₂ = -1

⇒        m₂ = -1/5

∵  m₂ = (q+3)/(p+4)

⇒ (q+3)/(p+4) = -1/5

⇒ -p - 4 = 5q + 15

⇒ 5q + p = -19 -----------------------(ii)

After solving the equation i) and (ii)

p = 9/13

and q = -46/13

                               ∴ L(9/13, -46/13) and D(-4, -3)

Now you can find length of DL .

DL = 61.4/13

Therefore height of ||gram = DL + 61.4/13 unit

Answered by gyanendrat432
36

Answer:

Step-by-step explanation:

Answer is 12√26/13

=12×5.09÷13

=61.18/13

=4.706 units

Attachments:
Similar questions