Math, asked by Thuthi, 6 months ago

If the points A(-3,1),B(-6,-7),C(3,9),D(6,-1) forms a ​

Answers

Answered by SujalSirimilla
3

CORRECTION: IT IS C(3, -9), not (3,9).

\mathcal{\green{\underline{\blue{GIVEN:}}}}

  • We are given four points:  A(-3,1),B(-6,-7),C(3,-9),D(6,-1).

\mathcal{\green{\underline{\blue{TO \:\: FIND:}}}}

  • We need to find what shape does the points form.

\mathcal{\green{\underline{\blue{SOLUTION:}}}}

We need to use the distance formula, which goes as:

d = \sqrt {\left( {x_1 - x_2 } \right)^2 + \left( {y_1 - y_2 } \right)^2 }

  • The distance of AB:

d = \sqrt {(-6 - (-3))^2 + (-7 - 1)^2}

d=\sqrt{73} \:\: units.

  • The distance of BC:

d = \sqrt {(3 - (-6))^2 + (-9 - (-7))^2}

d=\sqrt{85} \:\: units.

  • The distance of CD:

d = \sqrt {(6 - 3)^2 + (-1 -(- 9))^2}

d=\sqrt{73} \:\: units.

  • The distance of DA:

d = \sqrt {(-3 - 6)^2 + (1 - (-1))^2}

d=85 \:\: units.

Thus, AB=CD, BC=DA.

Opposite sides are equal, thus it is a parallelogram.

\huge\star\:\:{\orange{\underline{\pink{\mathbf{HOPE \:\: THIS \:\: HELPS \:\: :D}}}}}

Similar questions