Math, asked by jhanvipuri4, 5 months ago

If the points A (4 , 3) and B(x,5) are on the circle with centre O(2,3) find the

value of x​

Answers

Answered by Anonymous
2

GIVEN

If the points A (4 , 3) and B(x,5) are on the circle with centre O(2,3).

To Find

The value of x.

SOLUTION

It is said O(2,3) is the centre of the circle.

  • x = 2
  • y = 3

By using mid-point formula,

\large{\green{\underline{\boxed{\bf{For\:x=\dfrac{x_{1}+x_{2}}{2}}}}}}

\large{\green{\underline{\boxed{\bf{For\:y=\dfrac{y_{1}+y_{2}}{2}}}}}}

  • \large{\sf{Let\:4,x\:be\:x_{1},x_{2}\:respectively.}}
  • \large{\sf{Let\:3,5\:be\:y_{1},y_{2}\:respectively.}}

Now,

\large\implies{\sf{For\:x=\dfrac{x_{1}+x_{2}}{2}}}

\large\implies{\sf{2=\dfrac{4+x}{2}}}

\large\implies{\sf{2\times2=4+x}}

\large\implies{\sf{4-4=x}}

\large\therefore\boxed{\bf{x=0.}}

VERIFICATION

\large\implies{\sf{For\:x=\dfrac{x_{1}+x_{2}}{2}}}

\large\implies{\sf{2=\dfrac{4+0}{2}}}

\large\implies{\sf{2=\dfrac{4}{2}}}

\large\implies{\sf{2=\dfrac{\cancel{4}}{\cancel{2}}}}

\large\implies{\sf{2=2}}

\large\therefore\boxed{\bf{LHS=RHS.}}

So, B is (0, 5).

Value of x = 0.

Similar questions