Math, asked by riyaram85, 1 year ago

if the points A(6, 1), B(8.2). C(9.4) and D(p, 3) are the vertices of a
parallelogram, taken in order, find the value of p.​

Answers

Answered by Anonymous
18

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \huge\mathcal{\bf{\underline{\underline{\huge\mathcal{Answer}}}}}

\large\mathcal\red{solution}

A(6, 1), B(8.2). C(9.4) and D(p, 3) are the vertices of the parallelogram ABCD...so from the properties of the parallelogram we know that the opposite sides of a parallelogram are equal in length.

so,. AB=CD

now.....

AB =  \sqrt{(6 - 8) {}^{2} + (1 - 2) {}^{2}  }  \\  =  \sqrt{( - 2) {}^{2}  + ( - 1) {}^{2} }  \\  =  \sqrt{5}  \\ CD=  \sqrt{(9 - p) {}^{2} +  (4 - 3) {}^{2} }  \\  =  \sqrt{(9 - p) {}^{2}  + 1}  \\

now...AB=CD

 \sqrt{5}  =  \sqrt{(9 - p) {}^{2}  + 1}  \\  =  > 5 = (9 - p) {}^{2}  + 1 \\  =  > 4 = (9 - p) {}^{2} \\  =  > 2 = 9 - p \\  =  > p = 9 - 2 \\  =  > p = 7

\large\mathcal\red{hope\: this \: helps \:you......}

Similar questions