Math, asked by meenapatela21, 4 months ago

If the points A (6, 1), B (8, 2), C (9, 4) and D (p, 3) are the vertices of a parallologram, taken in order,

find the value of p.​

Answers

Answered by aryan073
2

Given :

The given vertices of a parallelogram are

•A=(6,1)

•B=(8,2)

•C=(9,4)

•D=(p,3)

To Find :

The values of p =?

Solution :

\red\bigstar\green{\bf{Given \: points }} \begin{cases} \: \sf{A=(6,1) } \\ \\ \sf{B=(8,2)} \\ \\ \sf{C=(9,4)} \\ \\ \sf{D=(p, 3)} \end{cases}

As we know that,

⇒The diagonals of a parallelogram bisect each other.

Consider,

• O is the midpoint of AC and BD

>> We find X-coordinates of O from both AC and BD.

Finding the midpoint of AC.

We have to find x-coordinate of O

\\ \bullet\bf{ x-coordinate \: of \: O=\dfrac{x_{1}+x_{2}}{2}}

Where,

\bullet\tt{ x_{1} =6  \: and \: x_{2}=9}

Putting values of x -coordinates :

\\ \implies\sf{x-coordinate \: of \: O=\dfrac{6+9}{2}}

\\ \implies\sf{x-coordinate \: of \: O=\dfrac{15}{2}} ......(1)

Finding midpoint of BD,

We have to find x-coordinates of O

\\ \implies\sf{ x-coordinate \: of \: O =\dfrac{x_{1}+x_{2}}{2}}

Where,

\bullet\tt{x_{1}=8 \: and \: x_{2}=p}

Putting the values of x-coordinates :

\\ \implies\sf{x-coordinates \: of \: O=\dfrac{x_{1}+x_{2}}{2}}

\\ \implies\sf{x-coordinates \: of \: O=\dfrac{8+p}{2}}

\\ \implies\sf{x-coordinates \: of \: O=\dfrac{8+p}{2}} ......(2)

Comparing equations (1) and (2) :

 \\  \\  \implies \sf \:  \frac{15}{2}  =  \frac{8 + p}{2}  \\  \\  \\  \implies \sf \:  \frac{15}{ \cancel2}  =  \frac{8 + p}{ \cancel2}  \\  \\  \\ \implies \sf \: 15 = 8 + p \\  \\ \\   \implies \sf \: 15 - 8 = p \\   \\  \\  \implies \sf \: 7 = p \\  \\  \\  \implies \boxed{ \bf{p = 7}}

Hence,

 \red \bigstar \boxed{ \sf{The \: value \: of \: p = 7}}

Similar questions