if the points A (6,1),B(8,2),C (9,4)and D (p,3) are the vertices of a parallelogram, taken in order, find the value of P
Answers
Answered by
12
o is the midpoint of AC
A(6,1) C(9,4)
O(x,y)=( 6+9÷2,1+4÷2)
O =(15÷2,5÷2)
O in the midpoint of BD
B(8,2) D(p,3)
O(15/2,5/2)=(8+p÷2,2+3÷2)
15/2=8+p/2
p=15-8
p=7
A(6,1) C(9,4)
O(x,y)=( 6+9÷2,1+4÷2)
O =(15÷2,5÷2)
O in the midpoint of BD
B(8,2) D(p,3)
O(15/2,5/2)=(8+p÷2,2+3÷2)
15/2=8+p/2
p=15-8
p=7
Answered by
4
Answer:
7
Step-by-step explanation:
we know that diagonals of parallelogram bisects each other
so, the coordinates of the midpoint of AC= coordinates of midpoint of BD
i.e.,6+9/2,1+4/2=8+p/2,5/2
15/2,5/2=8+p/2,5/2
15/2=8+p/2
15=8+p
p=7
Similar questions