If the points P(6,2) and Q(-2,1) and R are the vertices of a Δ PQR and R is the point on the locus of y=x -3x+4, then find the equation of the locus of centroid of Δ PQR
Answers
Answered by
2
Answer:
2x+y=7
Step-by-step explanation:
Given P (6,2) Q(2,-1)
R lies on the line y=x-3x+4
i.e ; y = -2x+4
Let us take (x1,y1) to be R
Then y1= -2x1 + 4
(x1, -2x1+4)
Let G(x,y) be the centroid of Δ PQR
(x,y) =( 1/3(6+2+x1) , 1/3(2-1-2x1+4) )
(x,y) = ( (8+x1)/3 ,(5-2x1)/3 )
3x= 8+x1
i.e; x1=3x-8
3y=5-2x1
3y=5-2*(3x-8)
3y=21-6x
Locus of centroid of Δ PQR is
6x+3y=21
2x+y=7
Similar questions