Math, asked by agnibeshdas1, 2 months ago

If the points P(a, -11), Q(5, b), R(2, 15) and S(1, 1) are the vertices of a
parallelogram PQRS, find the values of a and b.​

Answers

Answered by llDivinell
5

Answer:

If the points P(a, -11), Q(5, b), R(2, 15) and S(1, 1) are the vertices of a

parallelogram PQRS, find the values of a and b.

Answered by Anonymous
15

Given :

The vertices of a parallelogram PQRS,

  • P(a, -11)
  • Q(5, b)
  • R(2, 15)
  • S(1, 1)

To Find :

The values of a and b.

Solution :

Analysis :

Here the concept of mid-formula is used. Here we are given with all the four vertices of a parallelogram. We know that the diagonals of a parallelogram bisect each other. According to this property, the mid-points of PR and QS will be equal. Now by equating we will get the values of a and b.

Explanation :

Since the diagonals bisect each other, the mid-points of PR and QS will be equal.

Mid-Point of PR :

  • P(a, -11)
  • R(2, 15)

\boxed{\pmb{\sf\bigg\lgroup\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\bigg\rgroup}}

where,

  • x₁ = a
  • x₂ = 2
  • y₁ = -11
  • y₂ = 15

\implies\sf\bigg\lgroup\dfrac{a+2}{2},\dfrac{-11+15}{2}\bigg\rgroup

\\ \implies\sf\bigg\lgroup\dfrac{a+2}{2},\dfrac{4}{2}\bigg\rgroup

\\ \implies\sf\bigg\lgroup\dfrac{a+2}{2},\dfrac{\not{4}}{\not{2}}\bigg\rgroup

\\ \implies\sf\bigg\lgroup\dfrac{a+2}{2},2\bigg\rgroup

\therefore Mid-Point of PR is \pmb{\sf\bigg\lgroup\dfrac{a+2}{2},2\bigg\rgroup} (eq.(i))

Now,

Mid-Point of QS :

  • Q(5, b)
  • S(1, 1)

\boxed{\pmb{\sf\bigg\lgroup\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\bigg\rgroup}}

where,

  • x₁ = 5
  • x₂ = 1
  • y₁ = b
  • y₂ = 1

\implies\sf\bigg\lgroup\dfrac{5+1}{2},\dfrac{b+1}{2}\bigg\rgroup

\\ \implies\sf\bigg\lgroup\dfrac{6}{2},\dfrac{b+1}{2}\bigg\rgroup

\\ \implies\sf\bigg\lgroup\dfrac{\not{6}}{\not{2}},\dfrac{b+1}{2}\bigg\rgroup

\\ \implies\sf\bigg\lgroup3,\dfrac{b+1}{2}\bigg\rgroup

\therefore Mid-Point of QS is \pmb{\sf\bigg\lgroup 3,\dfrac{b+1}{2}\bigg\rgroup} (eq.(ii))

  • Mid-Points of PR and QS are same.

From eq.(i) and eq.(ii),

\implies\sf\dfrac{a+2}{2}=3

\implies\sf a+2=3\times2

\implies\sf a+2=6

\implies\sf a=6-2

\therefore\boxed{\pmb{\sf a=4.}}

Again,

From eq.(i) and eq.(ii),

\implies\sf\dfrac{b+1}{2}=2

\implies\sf b+1=2\times2

\implies\sf b+1=4

\implies\sf b=4-1

\therefore\boxed{\pmb{\sf b=3.}}

\\

So, the values of a and b are,

\boxed{\begin{cases}&\bf{a=4} \\ &\bf{b=3}\end{cases}}

Similar questions