If the points p(x, y) is equidistant from the points A(a+b, b-a) and B(a-b, a+b).Prove that bx=ay
❌NO SPAM ❌
⚜️BEST ANSWER WILL BE MARKED AS BRAINLIEST ⚜️
Answers
Answered by
5
Distace between the points (x, y) and (a+b, b-a) & (a-b, a+b) is equal
⇒ √{[x - (a + b)]2 + [y - (b -a)]2}
= √{x - (a - b)]2 + [y - (a + b)]2}
⇒ x2 + (a + b)2 - 2x(a + b) + y2 + (b - a)2 - 2y(b - a) = x2 + (a - b)2 - 2x(a - b) + y2 + (a + b)2 - 2y(a + b)
⇒ -2ax - 2bx - 2by + 2ay = - 2ax + 2bx - 2ay - 2by
⇒ ay - bx = bx - ay
⇒ 2ay = 2bx
⇒ bx = ay
Hence proved.
Answered by
11
Answer:
bx = ay
Step-by-step explanation:
Since,P(x,y) is equidistant from the A(a + b, b - a) and B(a - b, a + b).
∴ PA = PB
Distance formula:
⇒ √(x - (a + b))² + (y - (b - a))² = √(x - (a - b))² + (y - (a + b))²
On squaring both sides, we get
⇒ (x - (a + b))² + (y - (b - a))² = (x - (a - b))² + (y - (a + b))²
⇒ x² + (a + b)² - 2x(a + b) + y² + (b - a)² - 2y(b - a) = x² + (a - b)² - 2x(a - b) + y² + (a + b)² - 2y(b + a)
⇒ -2x(a + b) - 2y(b - a) = -2x(a - b) - 2y(b + a)
⇒ -2ax - 2bx - 2by + 2ay = -2ax + 2bx - 2by - 2ay
⇒ -2ax - 2bx - 2by + 2ay + 2ax - 2bx + 2by + 2ay = 0
⇒ -4bx + 4ay = 0
⇒ -4(bx - ay) = 0
⇒ bx - ay = 0
⇒ bx = ay.
--------------------------------------- Happy New year -------------------------------------
gegfhfhbduwobshakdbs:
:-)
Similar questions
Math,
7 months ago
World Languages,
7 months ago
Computer Science,
7 months ago
Social Sciences,
1 year ago
English,
1 year ago