Math, asked by AsifAhamed4, 1 year ago

If the points p(x, y) is equidistant from the points A(a+b, b-a) and B(a-b, a+b).Prove that bx=ay

❌NO SPAM ❌

⚜️BEST ANSWER WILL BE MARKED AS BRAINLIEST ⚜️

Answers

Answered by brainly218
5
<b><font face=copper black size=4 color=purple>

Distace between the points (x, y) and  (a+b, b-a) & (a-b, a+b) is equal  
<b><font face=copper black size=4 color=green>

⇒ √{[x - (a + b)]2 + [y - (b -a)]2}
<b><font face=copper black size=4 color=orange>

= √{x - (a - b)]2 + [y - (a + b)]2}

<b><font face=copper black size=4 color=blue>

 ⇒ x2 + (a + b)2 - 2x(a + b) + y2 + (b - a)2 - 2y(b - a) = x2 + (a - b)2 - 2x(a - b) + y2 + (a + b)2 - 2y(a + b) 

<b><font face=copper black size=4 color=green>

⇒ -2ax - 2bx - 2by + 2ay = - 2ax + 2bx - 2ay - 2by 
<b><font face=copper black size=4 color=purple>


⇒ ay - bx = bx - ay
<b><font face=copper black size=4 color=violet>

 ⇒ 2ay = 2bx 
<b><font face=copper black size=4 color=blue>

⇒ bx = ay<b><font face=copper black size=4 color=green>


 Hence proved.
Answered by siddhartharao77
11

Answer:

bx = ay

Step-by-step explanation:

Since,P(x,y) is equidistant from the A(a + b, b - a) and B(a - b, a + b).

∴ PA = PB

Distance formula:

⇒ √(x - (a + b))² + (y - (b - a))² = √(x - (a - b))² + (y - (a + b))²

On squaring both sides, we get

⇒ (x - (a + b))² + (y - (b - a))² = (x - (a - b))² + (y - (a + b))²

⇒ x² + (a + b)² - 2x(a + b) + y² + (b - a)² - 2y(b - a) = x² + (a - b)² - 2x(a - b) + y² + (a + b)² - 2y(b + a)

⇒ -2x(a + b) - 2y(b - a) = -2x(a - b) - 2y(b + a)

⇒ -2ax - 2bx - 2by + 2ay = -2ax + 2bx - 2by - 2ay

⇒ -2ax - 2bx - 2by + 2ay + 2ax - 2bx + 2by + 2ay = 0

⇒ -4bx + 4ay = 0

⇒ -4(bx - ay) = 0

⇒ bx - ay = 0

⇒ bx = ay.


--------------------------------------- Happy New year -------------------------------------


gegfhfhbduwobshakdbs: :-)
siddhartharao77: :-)
siddhartharao77: Thank you!
Vwishu1: Why x1-x2,, isn't it like x2-x1 @ {distance formula}
Similar questions