Math, asked by kunalcreations214, 11 months ago

If the points (x y -3) (2 0 -1) and (4 2 3) lie on a straight line then what are the values of x and y respectively?​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\text{Points are (x,y,-3), (2,0,-1) and (4,2,3) are collinear}

\textbf{To find:}

\text{The values of x and y}

\textbf{Solution:}

\text{We know that,}

\textbf{The equation of the line joining $(x_1,y_1,z_1)$ and $(x_2,y_2,z_2)$ is }

\bf\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1}

\textbf{The equation of the line joining $(2,0,-1)$ and $(4,2,3)$ is }

\dfrac{x-2}{4-2}=\dfrac{y-0}{2-0}=\dfrac{z+1}{3+1}

\dfrac{x-2}{2}=\dfrac{y}{2}=\dfrac{z+1}{4}

\text{Since (x,y,-3) lies on this line,}

\dfrac{x-2}{2}=\dfrac{y}{2}=\dfrac{-3+1}{4}

\dfrac{x-2}{2}=\dfrac{y}{2}=\dfrac{-2}{4}

\dfrac{x-2}{2}=\dfrac{y}{2}=\dfrac{-1}{2}

\dfrac{x-2}{2}=\dfrac{-1}{2}\;\text{and}\;\dfrac{y}{2}=\dfrac{-1}{2}

\implies\;x-2=-1\;\text{and}\;y=-1

\implies\;x=2-1\;\text{and}\;y=-1

\implies\;x=1\;\text{and}\;y=-1

\therefore\textbf{The value of x is 1 and y is -1}

Find more:

If (a,0) (b,0) (1,1) are these three points in a line than find the value of 1/a + 1/b = ​

https://brainly.in/question/14937195

Similar questions