) If the polar form of z = 8(cosπ/3+i sinπ/3) then the Cartesian form is *
Answers
Answer:
Solution :
z=i−1cos(π3)+isin(π3)∗cos(π3)−isin(π3)cos(π3)−isin(π3)
=icos(π3)−i2(sin(π3))−cos(π3)+isin(π3)cos2(π3)−i2sin2(π3)
=sin(π3)−cos(π3)+i(sin(π3)+cos(π3))14+34
⇒z=sin(π3)−cos(π3)+i(sin(π3)+cos(π3))
∴rcosθ=sin(π3)−cos(π3)
rsinθ=sin(π3)+cos(π3)
∴r2(cos2θ+sin2θ)=(sin(π3)−cos(π3))2+(sin(π3)+cos(π3))2
⇒r2=2(sin2(π3)+cos2(π3))=2
⇒r=2–√
∴2–√cosθ=sin(π3)−cos(π3)=3–√2−12
⇒cosθ=3–√−122–√=cos(5π12)
⇒θ=5π12
⇒2–√sinθ=sin(π3)+cos(π3)=3–√2+12
⇒sinθ=3–√+122–√=sin(5π12)
⇒θ=sin(5π12)
∴z=2–√(cos(5π12)+isin(5π12)), which is the required polar form.
Step-by-step explanation:
Answer:
z=i−1cos(π3)+isin(π3)∗cos(π3)−isin(π3)cos(π3)−isin(π3)
=icos(π3)−i2(sin(π3))−cos(π3)+isin(π3)cos2(π3)−i2sin2(π3)
=sin(π3)−cos(π3)+i(sin(π3)+cos(π3))14+34
⇒z=sin(π3)−cos(π3)+i(sin(π3)+cos(π3))
∴rcosθ=sin(π3)−cos(π3)
rsinθ=sin(π3)+cos(π3)
∴r2(cos2θ+sin2θ)=(sin(π3)−cos(π3))2+(sin(π3)+cos(π3))2
⇒r2=2(sin2(π3)+cos2(π3))=2
⇒r=2–√
∴2–√cosθ=sin(π3)−cos(π3)=3–√2−12
⇒cosθ=3–√−122–√=cos(5π12)
⇒θ=5π12
⇒2–√sinθ=sin(π3)+cos(π3)=3–√2+12
⇒sinθ=3–√+122–√=sin(5π12)
⇒θ=sin(5π12)
∴z=2–√(cos(5π12)+isin(5π12)), which is the required polar form.