If the polynomial 2 x cube minus x square + bx + 4 x + 1 is a factor and leave reminder for when divided by 2 x + 1 find the value of a and b
Answers
Step-by-step explanation:
f(x)=2x
f(x)=2x 3
f(x)=2x 3 +ax
f(x)=2x 3 +ax 2
f(x)=2x 3 +ax 2 +bx−6
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2⇒4a+2b=2−10=−8
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2⇒4a+2b=2−10=−8⇒2a+b=−4
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2⇒4a+2b=2−10=−8⇒2a+b=−4Solving 1 and 2
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2⇒4a+2b=2−10=−8⇒2a+b=−4Solving 1 and 22a+b=−4
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2⇒4a+2b=2−10=−8⇒2a+b=−4Solving 1 and 22a+b=−4a+b=4
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2⇒4a+2b=2−10=−8⇒2a+b=−4Solving 1 and 22a+b=−4a+b=4−−−
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2⇒4a+2b=2−10=−8⇒2a+b=−4Solving 1 and 22a+b=−4a+b=4−−−a=−8
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2⇒4a+2b=2−10=−8⇒2a+b=−4Solving 1 and 22a+b=−4a+b=4−−−a=−8a+b=4
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2⇒4a+2b=2−10=−8⇒2a+b=−4Solving 1 and 22a+b=−4a+b=4−−−a=−8a+b=4−8+b=4
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2⇒4a+2b=2−10=−8⇒2a+b=−4Solving 1 and 22a+b=−4a+b=4−−−a=−8a+b=4−8+b=4b=4+8=12
f(x)=2x 3 +ax 2 +bx−6(x−1) is a factor∴f(1)=0⇒2+a+b=6⇒a+b=4→1and f(x) leaves remainder 2 on being divided by (x−2)∴f(2)=2⇒2×2 3 +a×2 2 +b×2−6=2⇒4a+2b+16−6=2⇒4a+2b=2−10=−8⇒2a+b=−4Solving 1 and 22a+b=−4a+b=4−−−a=−8a+b=4−8+b=4b=4+8=12∴a=−8;b=12