Math, asked by jelinmdabhi, 8 months ago

if the polynomial 2x^3+3x^2-a and ax^3-5x+2 leave the same remainder when each is divided by (x-2) , find the value of a

Answers

Answered by TheProphet
9

S O L U T I O N :

\underline{\bf{Given\::}}

If the polynomial 2x³ + 3x² - a & ax³ - 5x + 2 leave the same remainder when each is divided by (x-2) .

\underline{\bf{Explanation\::}}

We have factor of f(x) = (x-2) & factor f(x) = 0.

→ f(x) = x - 2 = 0

→ f(x)  = 2

A/q

f(x) = ax³ - 5x + 2

g(x) = 2x³ + 3x² - a

\mapsto\tt{(Remainder_1) = (remainder_2)}

\mapsto\tt{f(x) = g(x)}

\mapsto\tt{f(2) = g(2)}

\mapsto\tt{ax^{3} - 5x + 2 = 2x^{3} + 3x^{2} -a}

\mapsto\tt{a(2)^{3} - 5(2) + 2 = 2(2)^{3} + 3(2)^{2} -a}

\mapsto\tt{a8  - 10 + 2 = 2\times 8 + 3\times 4-a}

\mapsto\tt{8a  -8 = 16 + 12-a}

\mapsto\tt{8a  -8 = 28-a}

\mapsto\tt{8a +a= 28+8}

\mapsto\tt{ 9a= 36}

\mapsto\tt{ a= \cancel{36/9}}

\mapsto\bf{a=4}

Thus;

The value of a will be 4 .

Similar questions