Math, asked by lakshmichhaya37, 1 month ago

if the polynomial (2x³+ax²+3x-5) and (x³+x²-2x+a) leave the same remainder when divided by (x -2),find the value of a. Also find the remainder in each case


plz answer fast​

Answers

Answered by aryanpathak0504
3

Step-by-step explanation:

let x-2=0

x=2

p(x)=(2x³+ax²+3x-5)=0

=2×2³+a×2²+3×2-5=0

=2×8+4a+6-5=0

16+4a+1=0

17+4a=0

4a= -17 (equation i)

p(x) =(x³+x²-2x+a)=0

p(2) =2×2³+2²-2×2+a=0

2×8+4-4+a=0

16+a=0

a= -16(equation ii)

(equation i) -(equation ii)

4a=-17

a= -16

- +

________

3a=-1

a= -1/3

please give me BRAINLEST

Answered by Anonymous
42

 \huge \rm {Answer:-}

__________________________________

 \sf \pink {Given:-}

★The two polynomials,

 \dashrightarrow {2x^{3}+ax^{2}+3x-5}

★And,

 \dashrightarrow {x^{3}+x^{2}-2x+a}

★leaves the same remainder,when divided by x-2

 \dashrightarrow {x-2=0}

 \dashrightarrow {x=2}

__________________________________

★Substituting 'x=2' in the two given polynomials :-

__________________________________

 \sf \blue {Polynomial\: 1:-}

 \dashrightarrow {P(x)=2x^{3}+ax^{2}+3x-5}

 \dashrightarrow {P(2)=2(2)^{3}+a(2)^{2}+3(2)-5}

 \dashrightarrow {P(2)=2\times8+a\times4+6-5}

 \dashrightarrow {P(2)=16+4a+1}

 \dashrightarrow {\fbox{P(2)=4a+17}}

__________________________________

 \sf \orange {Polynomial\: 2:-}

 \dashrightarrow {Q(x)=x^{3}+x^{2}-2x+a}

 \dashrightarrow {Q(2)=(2)^{3}+(2)^{2}-2(2)+a}

 \dashrightarrow {Q(2)=8+\cancel4-\cancel4+a}

 \dashrightarrow {\fbox {Q(2)=8+a}}

__________________________________

★As they leave the same remainder,the two polynomials can be equated.

 \dashrightarrow {P(2)=Q(2)}

 \dashrightarrow {4a+17=8+a}

★Bringing like terms (a-terms) to one side,

 \dashrightarrow {4a-a=8-17}

 \dashrightarrow {3a=-9}

\large \dashrightarrow {a=\frac{-9}{3}}

\large \implies {\fbox {a=-3}}

__________________________________

 \sf \purple {Thus,}

 \sf \to {The\: value\: of\: a\: is\: -3}

_________________________________

 \sf \red {Remainder\: of\: the\: polynomials-}

 \implies {x=2\: and\: a=-3}

POLYNOMIAL-1:

 \dashrightarrow {2x^{3}+ax^{2}+3x-5}

 \dashrightarrow {2(2)^{3}+(-3)(2)^{2}+3(2)-5}

 \dashrightarrow {2\times8+(-3)\times4+6-5}

 \dashrightarrow {16-12+1}

\large \implies {\fbox {5}}

__________________________________

POLYNOMIAL-2:

 \dashrightarrow {x^{3}+x^{2}-2x+a}

 \dashrightarrow {(2)^{3}+(2)^{2}-2(2)+(-3)}

 \dashrightarrow {8+\cancel4-\cancel4-3}

 \dashrightarrow {8-3}

\large \implies {\fbox {5}}

__________________________________

 \sf \green {Henceforth,\: Verified✓}

★The two polynomials leave the same remainder-->5

__________________________________

Similar questions