Math, asked by sjshhshw3897, 1 year ago

If the polynomial 4x4 + 6x3 + 13x2 + 20x + 7 is divided by another polynomial 3x2 + 4x + 1 then the remainder comes out to be ax + b, find ‘a’ and ‘b’. (3 marks)

Answers

Answered by Anonymous
15

Answer:

hello.....

Step-by-step explanation:

Hey friend here is your answer in the above attachment.

please mark brainliest and follow me...plz...

good noon... have a great day...

Attachments:
Answered by arshikhan8123
0

Answer:

After dividing (4 x⁴ + 6 x³ + 13 x² + 20 x + 7) by (3 x² + 4 x + 1), we get that:

a = 142 / 9

b = 6.

Step-by-step explanation:

(4 x⁴ + 6 x³ + 13 x² + 20 x + 7) ÷ (3 x² + 4 x + 1).

We need to divide the two polynomials.

We will do this by long division method:

                                         4/3 x² + 2/9 x + 1                      

              (3 x² + 4 x + 1) √(4 x⁴ + 6 x³ + 13 x² + 20 x + 7)

                                       - 4 x⁴ -16/3 x³ - 4/3 x²

                                         ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻

                                          2/3 x³ + 35/9 x² +20 x + 7

                                         -2/3 x³ - 8/9 x² - 2/9 x

                                         ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻

                                           3 x² + 178/9 x + 7

                                          -3 x²   -     9 x    - 1          

                                         ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻  

                                          142/9 x + 6

                                         ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻

So, we get the remainder as 142/9 x + 6

ATQ, we have:

a x + b = 142 / 9 x + 6

By comparing, we get that:

a = 142 / 9 and b = 6.

Therefore, a is 142 / 9 and b is 6.

#SPJ2

Similar questions