if the polynomial 9x^3-8x^2+kx+8 leaves a remainder of 998 when divided by x-5 , find the value of k
Answers
Answered by
1
Answer
p(x)=9x^3-8x^2+kx+8
g(x)=x-5=0
so,x=5
putting in p(x)
9(5)^3-8(5)^2+k(5)+8=998 (remainder)
1125-200+5k+8=998
933+5k=998
5k=998-933=65
k=65/5=13
k=13
Answered by
0
Answer:
P(x)=9x^3-8x^2+kx+8
g(x)=x-5
=5
p(x)=5
p(x)=9×(5)^3-8×(5)^2+k×5+8=998
=9×125-8×25+5k+8=998
=1125-200+5k+8=998
=935+5k=998
5k=998-935=65
k=65÷5=13
Therefore, k=13
Similar questions