If the polynomial f (X)=x^4-6x^3+16x^2-25x+10 is divided by another polynomial x^2-2x+k, the remainder comes out to be X+a, find k and a
Answers
Answered by
1
Step-by-step explanation:
Given If the polynomial f (X)=x^4-6x^3+16x^2-25x+10 is divided by another polynomial x^2-2x+k, the remainder comes out to be X+a, find k and a
- We have f(x) = x^4 – 6x^3 + 16x^2 – 25x + 10
- Also divisor = x^2 – 2x + k
- Remainder = x + a
- Subtracting remainder from f(x) we get
- x^4 – 6x^3 + 16x^2 – 25 x + 10 – (x + a)
- x^4 – 6x^3 + 16x^2 – 26x + 10 – a = f(y)
- now f(y) is divisible by divisor x^2 – 2x + k
- So we get
- x^2 – 4x + (8 – k)
- ----------------------------------------------------------------------------------------
- x^2 – 2k + k) x^4 – 6x^3 + 16x^2 – 26x + 10 – a
- x^4 – 2x^3 + kx^2
- --------------------------------------------------------------------------
- -4x^3 + (16 + k)x^2 – 26 x + 10 – a
- -4x^3 + 8x^2 - 4kx
- -------------------------------------------------------------------------
- (8 – k)x^2 – (26 – 4k)x + 10 – a
- (8 – k)x^2 – (16 – 2k)x + (8k – k^2)
- ----------------------------------------------------------------------
- (- 10 + 2k)x + (10 – a – 8k + k^2)
- Now remainder is zero
- -(10 + 2k)x + (10 – a – 8k + k^2) = 0
- Now – 10 + 2k = 0 and 10 – a – 8k + k^2 = 0
- So k = 5 and 10 – a – 8(5) + 5^2 = 0
- 10 – a – 40 + 25 = 0
- Or a = - 5
Therefore k = 5 and a = - 5
Reference link will be
https://brainly.in/question/2159029
Similar questions