Math, asked by Anonymous, 4 months ago

if the polynomial of zeroes of ax²-6x-6 is 4 find
a) find a
b) also find the sum of zeroes ​

Answers

Answered by Anonymous
31

\dag\:\underline{\sf AnsWer :} \\

Here we are given a polynomial p(x) = ax² - 6x - 6 and product of zeroes is 4. First compare the given polynomial with our general equation ax² + bx + c = 0. On comparing we have observed that a = a , b = -6 , c = -6. In the question it is mentioned that we have to find the value of a and also we have to find the sum of zeroes.

  • Before going to solve this question we should know the following things :

\bullet\:\sf Sum \:  of  \: zeroes = \dfrac{-b}{a} \\  \\

\bullet\:\sf Product \:  of  \: zeroes = \dfrac{c}{a} \\  \\

\bigstar\:\underline{\textbf{According to the Question Now :}} \\

:\implies\sf Product \:  of  \: zeroes = \dfrac{c}{a} \\  \\

:\implies\sf\dfrac{c}{a}  = 4\\  \\

:\implies\sf  \dfrac{ - 6}{a}  = 4\\  \\

:\implies\sf  \dfrac{ - 6}{4}  = a\\  \\

:\implies \underline{ \boxed{\sf a =  \dfrac{  - 3}{2}}}\\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━

\longrightarrow\:\:\sf Sum \:  of  \: zeroes = \dfrac{-b}{a} \\  \\

\longrightarrow\:\:\sf Sum \:  of  \: zeroes =   \dfrac{ - (-6)}{ \dfrac{ - 3}{2} } \\  \\

\longrightarrow\:\:\sf Sum \:  of  \: zeroes =   \dfrac{6}{ \dfrac{ - 3}{2} } \\  \\

\longrightarrow\:\:\sf Sum \:  of  \: zeroes =  6 \times   \dfrac{ 2}{ - 3} \\  \\

\longrightarrow\:\:\sf Sum \:  of  \: zeroes =   \dfrac{ 12}{ - 3} \\  \\

\longrightarrow\:\: \underline{ \boxed{\sf Sum \:  of  \: zeroes =    - 4}} \\  \\

Answered by Anonymous
6

Correct Question-:

  • If the products of zeroes of the polynomial ax²-6x-6 is 4 .
  • a) Find a
  • b) Also find the sum of zeroes .

AnswEr-:

  • \boxed{\sf{\large { a = \:\dfrac{-3}{2}\:}}}
  • \boxed{\sf{\large { \:Sum \:of\:it's\:zeroes=\:(-4)\:}}}

EXPLANATION-:

  • \dag{\sf{\large {Given-:}}}

  • Polynomial-: p(x) = ax²-6x-6
  • The Sum of it zeroes is -: 4

  • \dag{\sf{\large {To\:Find-:}}}

  • Find a .
  • Find the sum of it's zeroes.

\dag{\sf{\large {Solution:}}}

  • \dag{\sf{\large {First-:}}}

  • Compare p(x) = ax²-6x-6 this polynomial to general equation ax² + bx + c = 0

  • On comparing,

  • We have got -:
  • a = a
  • b = -6
  • c = -6

As We know that ,

  • \star{\sf{\large {Sum\:of\:it\:zeroes\:= \:\dfrac{-b}{a}\:or\:\dfrac{-(Cofficient\:of\:x)}{Cofficient\:ofx^{2}}}}}

  • \star{\sf{\large {Product\:of\:it\:zeroes\:= \:\dfrac{c}{a}\:or\:\dfrac{(Constant\:term)}{Cofficient\:ofx^{2}}}}}

Now ,

  • \dag{\sf{\large {Product\:of\:it\:zeroes\:= \:\dfrac{c}{a}\:or\:\dfrac{(Constant\:term)}{Cofficient\:ofx^{2}}}}}

  • Here -:
  • c = (-6) = Constant term
  • a = a = Cofficient of x²
  • Product of zeroes = 4

  • \implies{\sf{\large {Product\:of\:it\:zeroes\:= \:\dfrac{-6}{a}\:=4}}}

  • \implies{\sf{\large { \:\dfrac{-6}{a}\:=4}}}

  • \implies{\sf{\large { a=\:\dfrac{-6}{4}\:}}}

  • \implies{\sf{\large { \:\dfrac{-3}{2}\:=a}}}

\dag{\sf{\large {Therefore:}}}

  • \boxed{\sf{\large { a = \:\dfrac{-3}{2}\:}}}

Now ,

  • \star{\sf{\large {Sum\:of\:it\:zeroes\:= \:\dfrac{-b}{a}\:or\:\dfrac{-(Cofficient\:of\:x)}{Cofficient\:ofx^{2}}}}}

  • Here -:
  • b = -6

  • \implies{\sf{\large { a\:= \dfrac{-3}{2}\:}}}

  • \implies{\sf{\large {Sum\:of\:it\:zeroes\:= \:\dfrac{-(-6)}{\frac{-3}{2}}\:}}}

  • \implies{\sf{\large { \:\dfrac{-(-6)}{\frac{-3}{2}}\:}}}

  • \implies{\sf{\large { \:\dfrac{6}{\frac{-3}{2}}\:}}}

  • \implies{\sf{\large { \: 6 \times \dfrac{-2}{3}\:}}}

  • \implies{\sf{\large { \:2 \times (-2)\:}}}

  • \implies{\sf{\large { \:Sum \:of\:it's\:zeroes=\:(-4)\:}}}

Therefore,

  • \boxed{\sf{\large { \:Sum \:of\:it's\:zeroes=\:(-4)\:}}}

HENCE -:

  • \boxed{\sf{\large { a = \:\dfrac{-3}{2}\:}}}

  • \boxed{\sf{\large { \:Sum \:of\:it's\:zeroes=\:(-4)\:}}}

___________________♡_____________________

Similar questions