Math, asked by ritesh7, 1 year ago

If the polynomial p(x)=3x^4+3x^3-11x^2-5x+10 is completely divisible by 3x^2-5 find all its zeros

Answers

Answered by sriramganesh111
77
hope this helps you guys
Attachments:
Answered by mysticd
29

Answer:

 All \:zeroes \: of \: p(x),\\are \: -\frac{\sqrt{5}}{\sqrt{3}},</p><p>\frac{\sqrt{5}}{\sqrt{3}},2\:and\: -1

Step-by-step explanation:

Given polynomial :

p(x)=3x+3x³-11x²-5x+10

is completely divisible by 3x²-5 .

quotient : +x-2

3x²-5)3x+3x³-11x²-5x+10(

****** 3x+0-5x²

________________________

********* 3x³-6x²-5x

********* 3x³+0 -5x

________________________

*********** -6x²+10

*********** -6x²+10

________________________

Remainder (0)

Now,

p(x)=(3x²-5)(-x-2)

= (3x²-5)(-2x+1x-2)

= [(3x)²-(5)²[x(x-2)+1(x-2)]

=(3x+5)(3x-5)(x-2)(x+1)

Therefore,

 All \:zeroes \: of \: p(x),\\are \: -\frac{\sqrt{5}}{\sqrt{3}},</p><p>\frac{\sqrt{5}}{\sqrt{3}},2\:and\: -1

Similar questions