If the polynomial p(x)=x^2+3x-1 p(x)=p(1-x), then what is the value of 'x'?
Options:
a) 1/2 b) -1/2 c) 2 d) -2
Please give step-by-step explanation.
Answers
Step-by-step explanation:
GIVEN,
GIVEN, x²+3x-1.
GIVEN, x²+3x-1.p(x-1) is (x-1)²+3x-3-1
GIVEN, x²+3x-1.p(x-1) is (x-1)²+3x-3-1x²+1-2x+3x-4
GIVEN, x²+3x-1.p(x-1) is (x-1)²+3x-3-1x²+1-2x+3x-4x²+x-3.
GIVEN, x²+3x-1.p(x-1) is (x-1)²+3x-3-1x²+1-2x+3x-4x²+x-3.GIVEN THEY ARE EQUAL SO,
GIVEN, x²+3x-1.p(x-1) is (x-1)²+3x-3-1x²+1-2x+3x-4x²+x-3.GIVEN THEY ARE EQUAL SO,x ^ 2 + x - 3 = x ^ 2 + 3x - 1
GIVEN, x²+3x-1.p(x-1) is (x-1)²+3x-3-1x²+1-2x+3x-4x²+x-3.GIVEN THEY ARE EQUAL SO,x ^ 2 + x - 3 = x ^ 2 + 3x - 1x - 3 = 3x - 1
GIVEN, x²+3x-1.p(x-1) is (x-1)²+3x-3-1x²+1-2x+3x-4x²+x-3.GIVEN THEY ARE EQUAL SO,x ^ 2 + x - 3 = x ^ 2 + 3x - 1x - 3 = 3x - 1x = - 1
GIVEN, x²+3x-1.p(x-1) is (x-1)²+3x-3-1x²+1-2x+3x-4x²+x-3.GIVEN THEY ARE EQUAL SO,x ^ 2 + x - 3 = x ^ 2 + 3x - 1x - 3 = 3x - 1x = - 1ANSWER IS -1.