if the polynomial p(x)=x^3 + 8x^2 + 17x + ax is divided by (x+2) (x+1),the remainder are the same.find the value of 'a'
Answers
Answered by
2
p(1)=1^3+8(1)2+17(1)+a(1)
=1+8+17+1
=cancel the 1 and add the 8+17025 is a answer
=1+8+17+1
=cancel the 1 and add the 8+17025 is a answer
Answered by
12
here,
x+2=0
x=-2
p(-2)= x3+8x2+17x+ax=0
=(-2)3+8×(-2)2+17×-2+a×(-2)=0
= -8+32-34-2a=0
=-10-2a=0
-2a=10
a=5
x+1=0
x=-1
p(-1)=(-1)3+8(-1)2+17×(-1)+a(-1)=0
=-1+8-17-a=0
=-a=10
a=-10
I think something missing...
x+2=0
x=-2
p(-2)= x3+8x2+17x+ax=0
=(-2)3+8×(-2)2+17×-2+a×(-2)=0
= -8+32-34-2a=0
=-10-2a=0
-2a=10
a=5
x+1=0
x=-1
p(-1)=(-1)3+8(-1)2+17×(-1)+a(-1)=0
=-1+8-17-a=0
=-a=10
a=-10
I think something missing...
Similar questions