Math, asked by tanisha2222, 1 year ago

if the polynomial p(x)=(x^3 + ax^2 + bx+ 6) has (x-2) as a factor and leaves a remainder 3 when divided by (x-3) then find the values of a and b. ​

Answers

Answered by akshyatamohanta
2

p(x) =  {x}^{3} + a {x}^{2}  + bx + 6 \\ putting \: 2 \: in \: place \: of \: x \:  \\ p(2) =  {2}^{3}  + a( {2}^{2} ) + b(2) + 6 \\   \:  \:  \:  \:  \:   \:  \:  \:   \:  =  > 8 + 4a + 2b + 6 = 0 \: (since \: x - 2 \: is \: a \: factor \: )  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  > 4a + 2b = - 14 \\  \:  \:  \:  \:  \:  \:  \:  \:   \:  =  > 2a + b =  - 7 \:  \:  \:  \:  \:  \: ....(i) \\ putting \: 3 \: in \: place \: of \: x \\ p(3) =  {3}^{3}  + a( {3}^{2})  + b(3) + 6 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  > 27 + 9a + 3b + 6 =  -3 \: (since \: x - 3 \: leaves \: a \: remainder \: of \: 3) \\  \:  \:  \:  \:  \:  \:  \:  \:   \:  =  > 9a + 3b =  - 18 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  > 3a + b =  - 6 \:  \:  \:  \:  \:  \:  \:  \: .....(ii) \\ solving \: (i) \: and \: (ii) \\ a =  1 \: and \: b =  - 9

Similar questions