Math, asked by tptp, 5 months ago

If the polynomial t³ - 3t² + kt + 50 is divided by (t-3) , the remainder is 62. Find the value of K.

Answers

Answered by Anonymous
6

\huge\bf{\underline{\underline{Given  -}}}

★ Wʜᴇɴ Gɪᴠᴇɴ Pᴏʟʏɴᴏᴍɪᴀʟ Iꜱ Dɪᴠɪᴅᴇᴅ Bʏ (ᴛ-3) Tʜᴇ Rᴇᴍᴀɪɴᴅᴇʀ ɪꜱ 62 . Iᴛ Mᴇᴀɴꜱ ᴛʜᴇ Vᴀʟᴜᴇ Oꜰ ᴛʜᴇ Pᴏʟʏɴᴏᴍɪᴀʟ Wʜᴇɴ ᴛ = 3 ɪꜱ 62.

p(t) =  {t}^{3}  - 3 {t}^{2}  + kt + 50

\huge\bf{\underline{\underline{SolutiOn  -}}}

Bʏ Rᴇᴍᴀɪɴᴅᴇʀ Tʜᴇᴏʀᴇᴍ ,

Rᴇᴍᴀɪɴᴅᴇʀ =

p(3)  \: =  {3}^{3}  - 3 \times  {3}^{2}  + k \times 3 + 50 \\  \:  \:  \: =  27 - 3 \times 9 + 3k + 50 \\  = 27 - 27 + 3k + 50 \:  \:  \\  = 3k + 50 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

★ Bᴜᴛ Rᴇᴍᴀɪɴᴅᴇʀ Iꜱ 62 .

Sᴏ,

 \therefore \: 3k + 50 = 62 \\ \therefore3k = 62 - 50 \\ \therefore3k = 12 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \therefore \: k =  \frac{12}{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \therefore \: k = 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

★ Sᴏ ᴛʜᴇ Vᴀʟᴜᴇ Oꜰ  \fbox{k = 4}

Answered by Anonymous
12

Answer :

›»› The value of k is 4.

Given :

  • The polynomial t³ - 3t² + kt + 50 is divided by (t - 3), the remainder is 62.

To Find :

  • The value of k = ?

Solution :

When the polynomial t³ - 3t² + kt + 50 is divided by (t-3) , the remainder is 62. This means the value of polynomial when t = 3 is 62.

  • p(t) = t³ - 3t² + kt + 50

From remainder theorem

→ Reminder = p(3) = 3³ - 3 * 3² + k * 3 + 50

→ Reminder = p(3) = 27 - 3 * 9 + k * 3 + 50

→ Reminder = p(3) = 27 - 27 + 3k + 50

→ Reminder = p(3) = 0 + 3k + 50

→ Reminder = p(3) = 3k + 50

But remainder 62 so,

→ 3k + 50 = 62

→ 3k = 62 - 50

→ 3k = 12

k = 4

Hence, the value of k is 4.

Similar questions