if the polynomial x^4-6x^3-16x^2+25x+10 is divided by another polynomial x^2-2x+k , the remainder comes out to be x+a, find k and a.
It is not +16x^2. You may think like that. Answer the question by keeping it as -16x^2 only.
Answers
Answered by
5
x^2-2x+k ) x^4 - 6 x^3 - 16 x^2 + 25 x + 10 ( x^2 - 4 x - (24+k)
x^4 - 2x^3 + k x^2
===================
- 4 x^3 -(16+k) x^2 + 25 x
- 4 x^3 + 8 x^2 - 4 k x
=====================
- (16 + k + 8) x^2 + (25+4k) x + 10
-(24 +k) x^2 + 2(24+k) x - (24+k) k
============================
(-23 + 2 k) x + (k^2+ 24 k +10)
-23 + 2 k = 1 => k = 12
k^2 + 24 k + 10 = a => a = 442
reminder = x + 442
verification
========================================
x^2 - 2x + 12 ) x^4 - 6 x^3 - 16 x^2 + 25 x + 10 ( x^2 - 4 x - 36
x^4 - 2 x^3 + 12 x^2
====================
- 4 x^3 - 28 x^2 + 25 x
- 4 x^3 + 8 x^2 - 48 x
===============
- 36 x^2 + 73 x + 10
- 36 x^2 + 72 x - 432
=========================
1 x + 442
============================================
x^4 - 2x^3 + k x^2
===================
- 4 x^3 -(16+k) x^2 + 25 x
- 4 x^3 + 8 x^2 - 4 k x
=====================
- (16 + k + 8) x^2 + (25+4k) x + 10
-(24 +k) x^2 + 2(24+k) x - (24+k) k
============================
(-23 + 2 k) x + (k^2+ 24 k +10)
-23 + 2 k = 1 => k = 12
k^2 + 24 k + 10 = a => a = 442
reminder = x + 442
verification
========================================
x^2 - 2x + 12 ) x^4 - 6 x^3 - 16 x^2 + 25 x + 10 ( x^2 - 4 x - 36
x^4 - 2 x^3 + 12 x^2
====================
- 4 x^3 - 28 x^2 + 25 x
- 4 x^3 + 8 x^2 - 48 x
===============
- 36 x^2 + 73 x + 10
- 36 x^2 + 72 x - 432
=========================
1 x + 442
============================================
Similar questions