if the polynomial x^4 - 6x^3 + 16x^2 - 25x + 10 is divided by x^2 - 2x + k, the remainder is x + a, find K and a.
Here ^ means raised to the power
Answers
Answered by
12
P(x)
= x⁴ - 6 x³ + 16 x² - 25 x + 10
= (x²)² - x² * 6 x + 16 * x² - 25 x + 10
Instead of long division, i am doing as follows:
divisor: x² - 2 x + k
so substitute x² - 2x + k = 0 or x² = 2 x - k in P(x)
remainder = (2 x - k)² - 6 x ( 2x - k ) + 16 (2x - k) - 25 x + 10
= 4x² - 4 k x + k² - 12 x² + 6 x k + 32 x - 16 k - 25 x + 10
= - 8 x² + 2 k x + 7 x + k² - 16 k + 10
= - 8 (2 x - k) + 2 k x + 7 x + k² - 16 k + 10
= (- 9 + 2 k ) * x + k² - 8 k + 10
as the remainder is x + a . compare with the above expression:
2 k - 9 = 1 and so k = 5
10 - 8 k + k² = a => a = - 5
=============================
long division
x² - 2x + k ) x⁴ - 6 x³ + 16 x² - 25 x + 10 ( x² - 4 x + (8-k)
x⁴ - 2 x³ + k x²
======================
- 4 x³ + (16-k) x² - 25 x
- 4 x³ + 8 x² - 4 k x
================================
(8-k) x² + (4 k - 25) x + 10
8-k) x² - 2 (8-k) x + k (8-k)
===============================
(2 k - 9) x + 10 - 8 k + k²
we are given that reminder is x + a
=> 2 k - 9 = 1 hence, k = 5
=> a = 10 - 8 k + k² = - 5
= (x²)² - x² * 6 x + 16 * x² - 25 x + 10
Instead of long division, i am doing as follows:
divisor: x² - 2 x + k
so substitute x² - 2x + k = 0 or x² = 2 x - k in P(x)
remainder = (2 x - k)² - 6 x ( 2x - k ) + 16 (2x - k) - 25 x + 10
= 4x² - 4 k x + k² - 12 x² + 6 x k + 32 x - 16 k - 25 x + 10
= - 8 x² + 2 k x + 7 x + k² - 16 k + 10
= - 8 (2 x - k) + 2 k x + 7 x + k² - 16 k + 10
= (- 9 + 2 k ) * x + k² - 8 k + 10
as the remainder is x + a . compare with the above expression:
2 k - 9 = 1 and so k = 5
10 - 8 k + k² = a => a = - 5
=============================
long division
x² - 2x + k ) x⁴ - 6 x³ + 16 x² - 25 x + 10 ( x² - 4 x + (8-k)
x⁴ - 2 x³ + k x²
======================
- 4 x³ + (16-k) x² - 25 x
- 4 x³ + 8 x² - 4 k x
================================
(8-k) x² + (4 k - 25) x + 10
8-k) x² - 2 (8-k) x + k (8-k)
===============================
(2 k - 9) x + 10 - 8 k + k²
we are given that reminder is x + a
=> 2 k - 9 = 1 hence, k = 5
=> a = 10 - 8 k + k² = - 5
Anonymous:
I have done the question and the above method is wrong..
Similar questions