Math, asked by raymanoj, 1 year ago

if the polynomials 2x Cube + ax square + 3 x minus 5 and x cube + x square - 2 X + a leave the same remainder when divided by x minus 2 find the value of a​

Answers

Answered by MaheswariS
97

Answer:

The value of a is -3

Step-by-step explanation:

\textsf{Let}

\mathsf{p(x)=2x^3+ax^2+3x-5}

\mathsf{q(x)=x^3+x^2-2x+a}

\textsf{when p(x) is divided by (x-2), the remainder is p(2)}

\mathsf{=2(2)^3+a(2^)2+3(2)-5}

\mathsf{=16+4a+6-5}

\mathsf{=17+4a}

\textsf{when q(x) is divided by(x-2), the remainder is q(2)}

\mathsf{=2^3+2^4-2(2)+a}

\mathsf{=8+4-4+a}

\mathsf{=8+a}

\textsf{As per given data, p(2)=q(2)}

\implies\mathsf{17+4a=8+a}

\implies\mathsf{9=-3a}

\implies\boxed{\mathsf{a=-3}}

Answered by bavani77
10

Answer:

a=-3

Step-by-step explanation:

Let

p(x)=2x^3+ax^2+3x-5

q(x)=x^3+x^2-2x+9

when p(x) is divided by (x-2(,the remainder isi(2)

=2^3+2^4-2(2)+9

8+4-4+9=8+a

As per given data,p(2)=9(2)

=17+49=8+9

=9=-3a

a=-3

Similar questions