Math, asked by gundihavellasardonyx, 3 days ago



If the polynomials 2x3+ kx2 + 3x – 5 and x3+ x2– 2x + k, leave the same
remainder when divided by (x – 2), find the value of k.


Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Let assume that,

p(x) =  {2x}^{3} +  {kx}^{2}  + 3x - 5 \\

and

q(x) =  {x}^{3} +  {x}^{2}   - 2x + k \\

Now, given that when p(x) and q(x) divided by x - 2, both leaves the same remainder.

We know,

Remainder Theorem states that if a polynomial p(x) of degree greater than or equals to 1 is divided by x - a, then remainder is p(a).

So, using Remainder Theorem, we have

\rm \: p(2) = q(2) \\

\rm \: {2(2)}^{3} +  {k(2)}^{2}  + 3(2) - 5 = {(2)}^{3} +  {(2)}^{2}   - 2(2) + k \\

\rm \: 16 + 4k  + 6 - 5 = 8 + 4 - 4 + k \\

\rm \: 17 + 4k = 8 + k \\

\rm \: 4k - k = 8 - 17\\

\rm \: 3k =  - 9\\

\rm\implies \:k \:  =  \:  -  \: 3 \\

\rule{190pt}{2pt}

Additional Information :-

Factor Theorem :- This theorem states that if a polynomial f(x) of degree greater than or equals to 1 is divided by x - a, then f(a) = 0.

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions