Math, asked by sameerabegum5335, 5 months ago

if the polynomials ×3+a×2+5and×3-2×2+a are divided by (×+2)leave the same remainder,find the value of a

Answers

Answered by Anonymous
43

 \large \underline \bold{Question}:-

if the polynomials (x³ + ax² + 5) and (x³ - 2x² + a) give the same remainder , when both are divided by (x + 2). then the value of a ?

 \large \underline \bold{Given}:-

There are the two polynomials as -

1) \sf{x^{3} + ax^{2} + 5}

2) \sf{x^{3} - 2x^{2} + a}

both give the same remainder , when they are divided by (x + 2).

 \large \underline \bold{Solution}:-

As we know ,

when both polynomials are divided by (x + 2) . remainder is same in each condition.

 \small \bold{(x^{3} + ax^{2} + 5) \: = \: (x^{3} - 2x^{2} + a) -(1)}

So ,

 \qquad (x + 2)\: =\: 0

\:  \qquad \qquad \small \bold{x \: = \: - 2}

 \small \bold{Now \: ,}

On putting value of x in above eq. -

\sf{(-2)^{3} + a(-2)^{2} + 5 \: = \: (-2)^{3} - 2(-2)^{2} + a}

\: \qquad\sf{-8 + a(4) + 5 \: = \: -8 - 2(4) + a}

\: \: \: \: \qquad\sf{-\cancel{8} + 4a + 5 \: = \: -\cancel{8} - 8 + a}

\: \: \: \: \: \: \:  \qquad\qquad\sf{4a + 5 \: = \: - 8 + a}

\: \: \: \: \: \: \: \qquad\qquad\sf{4a - a \: = \: - 8 - 5}

\: \: \: \: \: \: \qquad\qquad\qquad\sf{3a \: = \: - 13}

\: \: \: \: \: \: \: \qquad\qquad\qquad \large \bold{a \: = \: -\dfrac{13}{3}}


amitkumar44481: Perfect :-)
Glorious31: Great
VishalSharma01: Good :)
MissAlison: Vely gud!..
Anonymous: Thanks
MissAlison: Mention not..
Anonymous: Wonderful! :D
Answered by Anonymous
7

Answer:

\huge\rm\green{\underline{\underline{Solution:–}}}

given p(x)= x³+ax²+5

→ p(-2)= (-2)³+ a(-2)²+ 5

→ -8+ 4a+ 5

→ 4a- 3 → equation 1

→ q(x) = x³- 2x²+ a

→ q(-2) = (-2)- 2(-2)²+ a

→ -8- 8+ a

→ a- 16 → equation 2

\rm\pink{Equate:–}

Equation 1 and Equation 2

→ 4a- 3 = a- 16

→ 4a- a = 3- 16

→ 3a = -13

\rm  \: Answer→ a =  \frac{ - 13}{3}


amitkumar44481: Good :-)
Glorious31: Appreciable
VishalSharma01: Awesome As Always :)
Anonymous: Thank uh mods :D
Similar questions