Math, asked by galipallisoumya, 4 days ago

If the polynomials ax^3+3x^2-13 and 2x^3-5x+a are divided by (x-2) leave the same remainder. Find the value of a.​

Answers

Answered by bharatbansalpkrv741
0

Answer:

Here 8s your ans and 0lz mark me as brainliest

Step-by-step explanation:

Question

If the polynomials ax3+3x2−13 and 2x3−5x+a are divided by (x−2) leave the same remainder, find the value of a.

Given polynomial p(x)=ax3+3x2−13 and 2x2−5x+a is divided by x-2 get same remainder

Then x-2=0 or x=2

p(x)=ax3+3x2−13

Replace x by 2 we get 

p(2)=a(2)3+3(2)2−13

⇒p(2)=8a+12−13

⇒p(2)=8a−1

2x2−5x+a

Replace x by 2 we get

q(2)=2(2)3−5(2)+a

⇒q(2)=16−10+a

⇒q(2)=6+a

Given remainder is same 

∴8a−1=6+a

⇒8a−1+1−a=6+a+1

Answered by pushyahasini
0

Answer:

A=1

Step-by-step explanation:

LET p(x)=ax^3+3x^2-13 and q(x)=2x^3-5x+a

p(x) and q(x) when divided by x-2 leave same remainder

p(2)=q(2)

a(2)^3+3(2)^2-13=2(2)^3-5(2)+a

8a+12-13=16-10+a

8a-1=a+6

8a-a=6+1

7a=7

a=1

hence a's value is 1.

Similar questions