Math, asked by asuryaprakash5241, 6 months ago

If the polynomials ax3+4x2+3x-4 and x3 -4x+a leave the same  remainder when divided by (x-3), find the value of 'a'.
plz don't give unnecessary answers ​

Answers

Answered by ajay8949
1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x - 3 = 0

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{x = 3}

p(x) = a {x}^{3}  +  4{x}^{2}  + 3x - 4

p(x) =  {x}^{3}  - 4x + a

as \: both \: eqations \: leave \: same \: remainder \\ when \: divided \: by \: (x - 3) \: so

a {x}^{3}  +  4{x}^{2}  + 3x - 4 = {x}^{3}  - 4x + a

a(3) {}^{3}  + 4 {(3)}^{2}  + 3(3) - 4 =  {3}^{3}  - 4(3) + a

27a + 36 + 9 - 4 = 27 - 12 + a

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 27a + 41 = 15 + a

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 27a - a = 15 - 41

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 26a =  - 26

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \red{a =  - 1}}

\mathcal\orange{Please\:mark\:as\:brainliest.....}

Similar questions