If the polynomials
and
are divided by (x+2) leave the same
remainder, find the value of a
Answers
Answered by
4
Step-by-step explanation:
Step-by-step explanation:use
Step-by-step explanation:use =4+3−12a−5
Step-by-step explanation:use =4+3−12a−5 =2−12a=R
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2)
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2)
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0∴3(2−12a)+2+4a−28=0
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0∴3(2−12a)+2+4a−28=0⇒6−36a+2+4a−28=0
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0∴3(2−12a)+2+4a−28=0⇒6−36a+2+4a−28=0⇒32a=−20
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0∴3(2−12a)+2+4a−28=0⇒6−36a+2+4a−28=0⇒32a=−20⇒
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0∴3(2−12a)+2+4a−28=0⇒6−36a+2+4a−28=0⇒32a=−20⇒ a=
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0∴3(2−12a)+2+4a−28=0⇒6−36a+2+4a−28=0⇒32a=−20⇒ a= 8
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0∴3(2−12a)+2+4a−28=0⇒6−36a+2+4a−28=0⇒32a=−20⇒ a= 8−5
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0∴3(2−12a)+2+4a−28=0⇒6−36a+2+4a−28=0⇒32a=−20⇒ a= 8−5
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0∴3(2−12a)+2+4a−28=0⇒6−36a+2+4a−28=0⇒32a=−20⇒ a= 8−5
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0∴3(2−12a)+2+4a−28=0⇒6−36a+2+4a−28=0⇒32a=−20⇒ a= 8−5
Step-by-step explanation:use =4+3−12a−5 =2−12a=R 1 ⟶(1)Similarly,g(2)=2(2) 3 +a(2) 2 −6(2)−2 =16+4a−12−2 =2+4a=R 2 ⟶(2)Also, 3R 1 +R 2 −28=0∴3(2−12a)+2+4a−28=0⇒6−36a+2+4a−28=0⇒32a=−20⇒ a= 8−5
Answered by
0
Answer:
f(x)=4x
3
+3x
2
−12ax−5
g(x)=2x
3
+ax
2
−6x−2
f(x) when divided by (x−1) leaves remainder as R
1
g(x) when divided by (x−2) leaves remainder as R
2
Therefore, according to Remainder theorem,
f(1)=4(1)
3
+3(1)
2
−12a(1)−5
=4+3−12a−5
=2−12a=R
1
⟶(1)
Similarly,
g(2)=2(2)
3
+a(2)
2
−6(2)−2
=16+4a−12−2
=2+4a=R
2
⟶(2)
Also, 3R
1
+R
2
−28=0
∴3(2−12a)+2+4a−28=0
⇒6−36a+2+4a−28=0
⇒32a=−20
⇒
a=
8
−5
Similar questions